Abstract:
Methods, systems, and devices for providing data from a server to a UAV enable the UAV to navigate with respect to areas of restricted air space (“restricted areas”). A server may receive from a UAV, a request for restricted area information based on a position of the UAV. The server may determine boundaries of a surrounding area containing the position of the UAV and a number of restricted areas. The server may transmit coordinate information to the UAV defining the restricted areas contained within the surrounding area.
Abstract:
Methods, devices and systems for detecting suspicious or performance-degrading mobile device behaviors intelligently, dynamically, and/or adaptively determine computing device behaviors that are to be observed, the number of behaviors that are to be observed, and the level of detail or granularity at which the mobile device behaviors are to be observed. The various aspects efficiently identify suspicious or performance-degrading mobile device behaviors without requiring an excessive amount of processing, memory, or energy resources.
Abstract:
A position fix for a mobile platform is determined using RSSI values for wireless signals received from access points (APs), at least one of which has dynamic transmission power control. The transmission power data for the APs is received from an entity separate from the APs, e.g., a central entity or a positioning assistance server. The RSSI values for wireless signals received from the APs are acquired, as is an RSSI heatmap. Using the transmission power data, the RSSI values and the RSSI heatmap, the position fix for the mobile platform is determined. The position fix may be determined by the mobile platform or a positioning assistance server. Additionally, a server may receive transmission power data for APs and may provide to a mobile platform RSSI heatmap information based on the transmission power data. The RSSI heatmap information may be, e.g., the transmission power data or a RSSI heatmap.
Abstract:
Various aspects include methods for profiling access points for a mobile communication device that includes a modem controlling a first radio access technology (RAT) and a second RAT. The device modem may establish a first level of communications with a potential network access point and obtain a first set of observed parameters of the potential network access point through the first level of communications. The modem may determine whether the first set of observed parameters of the potential network access point matches expected parameters for a network access point, and establish a second level of communications with the potential network access point in response to determining that the first set of observed parameters matches expected parameters of the network access point.
Abstract:
Described are devices, methods, techniques and systems for locating a portable services access transceiver (PSAT) for use in aiding emergency “911” services. In one implementation, one or more conditions indicative of movement of a PSAT may initiate a process for obtaining a new estimated location of the PSAT. In another implementation, a location of a PSAT may be determined or updated using indoor navigation techniques.
Abstract:
Systems, methods, and devices of the various aspects enable identification of anomalous application behavior. A computing device processor may detect network communication activity of an application on the computing device. The processor may identify one or more device states of the computing device, and one or more categories of the application. The processor may determine whether the application is behaving anomalously based on a correlation of the detected network communication activity of the application, the identified one or more device states of the computing device, and the identified one or more categories of the application.
Abstract:
Various embodiments include methods of evaluating device behaviors in a computing device and enabling white listing of particular behaviors. Various embodiments may include monitoring activities of a software application operating on the computing device, and generating a behavior vector information structure that characterizes a first monitored activity of the software application. The behavior vector information structure may be applied to a machine learning classifier model to generate analysis results. The analysis results may be used to classify the first monitored activity of the software application as one of benign, suspicious, and non-benign. A prompt may be displayed to the user that requests that the user select whether to whitelist the software application in response to classifying the first monitored activity of the software application as suspicious or non-benign. The first monitored activity may be added to a whitelist of device behaviors in response to receiving a user input.
Abstract:
Methods and apparatuses are provided which may be implemented in various devices to provide navigation assistance data and/or the like to a mobile station with regard to at least one of a plurality of different indoor regions. For example, a computing platform of a map inference device may establish encoded metadata for at least a portion of an indoor region based, at least in part, on an electronic map, an access point locator, or some combination thereof, and provide such encoded metadata to a repository device that may provide at least a portion of the encoded metadata to a mobile station.
Abstract:
Methods and apparatuses are provided which may be implemented in various devices for to determine or assist in determining that a mobile station is at one or more particular indoor regions and to provide positioning assistance data and/or the like to the mobile station with regard to at least the one or more particular indoor regions.
Abstract:
Systems, methods, and devices of the various aspects enable detecting a malfunction caused by radio frequency (RF) interference. A computing device processor may identify a location of the computing device based on a plurality of real-time data inputs received by the computing device. The processor may characterize an RF environment of the computing device based on the identified location and the plurality of real-time data inputs. The processor may determine at least one RF emissions threshold based on the characterization of the RF environment. The processor may compare the characterization of the RF environment to the at least one RF emissions threshold, and may perform an action in response to determining that the characterization of the RF environment exceeds the at least one RF emissions threshold.