Abstract:
Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus includes a processing system configured to generate a frame comprising a preamble, a first header, and a second header, wherein the preamble and the first header are configured to be decoded by a first device operating according to a first protocol, the second header not being configured to be decoded by the first device, and wherein the preamble, the first header, and the second header are configured to be decoded by a second device operating according to a second protocol; and an interface configured to output the frame for transmission.
Abstract:
This disclosure provides systems, methods, and apparatuses for wireless sensing. In some aspects, a first wireless communication device may receive a first wireless transmission including a transmit (TX) parameter information element (IE). The first wireless communication device may verify the integrity of the TX parameter IE using a message integrity code (MIC) in the first wireless transmission, discarding the first wireless transmission when the MIC does not verify the integrity of the TX parameter IE. The first wireless device may obtain one or more transmission parameters for one or more second wireless communication devices associated with the TX parameter IE. The first wireless communication device may receive a second wireless transmission from one of the second wireless communication devices and obtain one or more wireless sensing measurements associated with the second wireless transmission and the one or more transmission parameters.
Abstract:
Disclosed embodiments facilitate wireless channel calibration, including ranging and direction finding, between wirelessly networked devices. In some embodiments. a method on a first station (STA) may comprise: transmitting a first NDPA frame to one or more second stations (STAs), the first NDPA frame comprising a first bit indicating that one or more subsequent frames comprise ranging or angular information; and transmitting, after a Short Interval Frame Space (SIFS) time interval, a second frame. The second frame may be one of: a Null Data Packet az (NDP_az) frame with information about a time of transmission of the NDP_az frame, or a Null Data Packet (NDP) frame, or a Beam Refinement Protocol (BRP) frame. The first NDPA frame may be unicast, multicast, or broadcast.
Abstract:
Certain aspects of the present disclosure are directed to a digital predistortion (DPD) device for use within a wireless transmitter that permits the use of a downstream digital-to-analog converter that operates at a clock rate close to the bandwidth of a digital baseband input signal. In some examples, a sampling rate of a digital baseband input signal is increased using an upsampler to obtain an increased rate digital input signal. Predistortion is applied to the increased rate digital input signal using a DPD device to obtain a predistorted digital signal. The sampling rate of the predistorted digital signal is then decreased using a downsampler to obtain a lower-rate predistorted digital signal with a sampling rate below the increased rate of the upsampler (e.g. close to the bandwidth of a digital baseband input signal). A low pass filter may be provided to filter out-of-band signal components from the predistorted digital signal.
Abstract:
Certain aspects of the present disclosure provide a method for wireless communications. The method comprises generating a frame comprising a first portion and a second portion. The method also comprises outputting the first portion of the frame for transmission on at least one channel, shifting a center frequency of the at least one channel, and outputting the second portion of the frame for transmission on the at least one channel after the center frequency shift.
Abstract:
Methods for wireless communication and system therefrom are provided. According to aspects, a method includes generating a plurality of training packets for transmission, and outputting each of the plurality of training packets for transmission to a device in a different one of a plurality of directions, wherein at least two of the plurality of training packets are output for transmission to the device in at least two of the plurality of directions using orthogonal transmission types. The method also includes obtaining a feedback signal comprising information for identifying at least one of the plurality of directions to be used for wireless communications with the device.
Abstract:
Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus comprises an interface configured to receive a plurality of channel estimation sequences, wherein each one of the plurality of channel estimation sequences is received on a respective one of a plurality of channels, each one of the plurality of channels having a respective one of a plurality of frequency bands. The apparatus also comprises a processing system configured to generate a channel estimation for each one of the plurality of channels using the respective one of the plurality of channel estimation sequences, and to generate a collective channel estimation based on the channel estimations.
Abstract:
Systems and methods are provided for estimating non-linearity of a transmitter, a receiver or both based on measurements and/or feedback. The estimation of the non-linearity may be used at the transmitter, the receiver or both to tune one or more components to reduce non-linearity. In one aspect, a method for wireless communications comprises generating at least one training signal, and outputting the at least one training signal for transmission to a wireless node. The method also comprises receiving a feedback message from the wireless node, the feedback message providing feedback of the at least one training signal received at the wireless node. The method further comprises tuning at least one component based on the feedback message.
Abstract:
Disclosed embodiments facilitate wireless channel calibration, ranging, and direction finding, between networked devices. A method on a first station (STA) may comprise: broadcasting, at a first time, a first NDPA frame to a plurality of second STAs. The first NDPA frame may include a first bit indicating that one or more subsequent frames comprise ranging or angular information. After a Short Interval Frame Space (SIFS) time interval from the first time, a second frame may be broadcast. The second frame may be a Null Data Packet (NDP) frame. In response, a plurality of Compressed Beamforming (CBF) frames may be received at the first STA where each CBF frame may be received from a distinct corresponding second STA, and may include Channel Feedback Information field with information pertaining to communication channel between the first STA and the corresponding second STA. The communications may be encoded using Orthogonal Frequency Division Multiple Access.
Abstract:
Certain aspects of the present disclosure provide a method for wireless communications. The method comprises generating a frame comprising a first portion and a second portion. The method also comprises outputting the first portion of the frame for transmission on at least one channel, shifting a center frequency of the at least one channel, and outputting the second portion of the frame for transmission on the at least one channel after the center frequency shift.