Abstract:
An RF front end provides high receive selectivity by selectively configuring matching networks within a Time Division Duplex transceiver. One or more elements of the transmit or receive signal paths are configured to perform multiple functions. Each of the functions can be performed in dependence on an operating mode of the RF front end. In some embodiments, one or more elements in the transmit or receive signal paths are reconfigured during receive portions of operation to provide additional receive selectivity.
Abstract:
An amplifier may include a first transistor. The amplifier may also include a second transistor coupled to the first transistor in an output stage of the amplifier. The amplifier may also include a level shift resistor coupled between a gate of the first transistor and a gate of the second transistor. The amplifier may further include a feedback bias circuit coupled to the gate of the first transistor and the gate of the second transistor through the level shift resistor. The feedback bias circuit may be configured to sense a common mode voltage of the output stage of the amplifier, and to compare the common mode voltage with a reference voltage to control a resistor bias current conducted by the level shift resistor.
Abstract:
A method, an apparatus, and a system product for mixing radio frequency signals are provided. In one aspect, the apparatus is configured to perform switching of switches based on first, second, third, and fourth phased half duty clock signals. The apparatus convolves a differential input signal on a differential input port with the first, second, third, and fourth phased half duty cycle clock signals to concurrently generate a differential in-phase output signal and a differential quadrature-phase output signal on a dual differential output port. The first, second, third, and fourth phased half duty cycle clock signals are of the same frequency and out of phase by a multiple of ninety degrees with respect to each other.
Abstract:
An apparatus including: a transmitter output impedance matching circuit including an inductive element; a low noise amplifier (LNA) including a first field effect transistor (PET); a receiver input impedance matching circuit, including: a transformer including a first winding and a second winding; and a capacitor coupled in series with the first winding between a first end of the inductive element and a gate of the first FET, wherein the second winding is coupled to a second end of the inductive element; and a radio frequency (RF) port coupled between the first end of the inductive element and the capacitor.
Abstract:
The relative position of a user equipment (UE) within a vehicle is determined using angular measurements, such as angle of arrival (AOA), and optionally ranging measurements, with respect to a number of wireless transceivers within the vehicle using wideband signals. The relative position of the UE with respect to a personal zone or the steering wheel may be determined based on known positions of the wireless transceivers. If the UE is determined to be within the personal zone, at least one functionality of the UE is restricted to avoid driver distraction and, optionally, the operation autonomous driving of the vehicle adjusted. If the UE is worn on the driver's wrist the relative position of the UE with respect to the steering wheel may be similarly determined and operation of the vehicle modified if the UE is determined to be outside a threshold distance from the steering wheel.
Abstract:
An apparatus includes a low-noise amplifier having an input and an output, a first switch coupled between the input of the low-noise amplifier and the output of the low-noise amplifier, and a transformer including a first inductor and a second inductor, wherein the first inductor is coupled to the output of the low-noise amplifier. The apparatus also includes a power amplifier having an input and an output, and a switching circuit coupled between the output of the power amplifier and the second inductor.
Abstract:
Techniques are provided for determining the location of ultrawideband (UWB) devices in a network. An example method for providing location information associated with a target device in a UWB network includes determining a location of a bridge device, querying the bridge device for location information associated with the target device, receiving location information associated with the target device from the bridge device, and determining a location of the target device based at least in part on the location of the bridge device and the location information associated with the target device.
Abstract:
The relative position of a user equipment (UE) within a vehicle is determined using angular measurements, such as angle of arrival (AOA), and optionally ranging measurements, with respect to a number of wireless transceivers within the vehicle using wideband signals. The relative position of the UE with respect to a personal zone or the steering wheel may be determined based on known positions of the wireless transceivers. If the UE is determined to be within the personal zone, at least one functionality of the UE is restricted to avoid driver distraction and, optionally, the operation autonomous driving of the vehicle adjusted. If the UE is worn on the driver's wrist the relative position of the UE with respect to the steering wheel may be similarly determined and operation of the vehicle modified if the UE is determined to be outside a threshold distance from the steering wheel.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for simultaneous multi-band transmission, including techniques and circuitry for reducing the coupling of a second-order harmonic signal into a victim circuit. One example radio frequency front-end circuit generally includes a first transmit output stage circuit configured to output signals in a first frequency band and a second transmit output stage circuit configured to output signals in a second frequency band. The first transmit output stage circuit generally includes a first adjustable transconductance stage comprising an input stage and a cascode stage coupled to the input stage; and a first adjustable impedance stage coupled to the first adjustable transconductance stage. For certain aspects, the second transmit output stage circuit generally includes a second adjustable transconductance stage and a second adjustable impedance stage coupled to the second adjustable transconductance stage.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for generating a two-tone signal for performing linearity calibration of a radio frequency (RF) circuit. One example apparatus generally includes a tone generating circuit configured to generate a first single-tone signal from a digital clock signal and a mixer connected with the tone generating circuit and configured to mix the first single-tone signal with a second single-tone signal to provide a two-tone signal having frequencies at a sum and a difference of frequencies of the first and second single-tone signals.