摘要:
A programmable logic device (“PLD”) includes communication interface circuitry that can support any of a wide range of communication protocols, including Packet Over Sonet (“POS-5”) and 8-bit/10-bit (“8B10B”) protocols. The interface circuitry includes various functional blocks that are at least partly hard-wired to perform particular types of functions, but that in at least many cases are also partly programmable to allow the basic functions to be adapted for various protocols. Routing of signals to, from, between, and/or around the various functional blocks is also preferably at least partly programmable to facilitate combining the functional blocks in various ways to support various protocols.
摘要:
In a programmable logic device (“PLD”), a serial interface incorporating phase-locked loops (“PLLs”) is provided with connections that allow one or more of the PLLs to be used as general purpose PLLs in the PLD. The connections include conductors to allow reference clock signals from the PLD logic core, or from outside the PLL, to be used by the PLLS, as well as conductors that allow the PLD core to control the phases of the PLLs. For some of the PLLs, conductors to allow the PLL output clock to be used by the PLD are also provided, where such output conductors do not normally exist in such a serial interface.
摘要:
A circuit includes first and second aligner circuits and a deskew circuit. The first aligner circuit is operable to align a first input serial data signal with a control signal to generate a first aligned serial data signal. The second aligner circuit is operable to align a second input serial data signal with the control signal to generate a second aligned serial data signal. The deskew circuit is operable to reduce skew between the first and the second aligned serial data signals to generate first and second output serial data signals.
摘要:
Serializer circuitry for high-speed serial data transmitter circuitry on a programmable logic device (“PLD”) or the like includes circuitry for converting parallel data having any of several data widths to serial data. The circuitry can also operate at any frequency in a wide range of frequencies, and can make use of reference clock signals having any of several relationships to the parallel data rate and/or the serial data rate. The circuitry is configurable/re-configurable in various respects, at least some of which configuration/re-configuration can be dynamically controlled (i.e., during user-mode operation of the PLD).
摘要:
An integrated circuit like a programmable logic device (“PLD”) includes multiple channels of data communication circuitry. Circuitry is provided for selectively sharing signals (e.g., control-type signals) among these channels in groupings of various size so that the device can better support communication protocols that require various numbers of channels (e.g., one channel operating relatively independently, four channels working together, eight channels working together, etc.). The signals shared may include a clock signal, a FIFO write enable signal, a FIFO read enable signal, or the like. The circuit arrangements are preferably modular (i.e., the same or substantially the same from one channel to the next and/or from one group of channels to the next) to facilitate such things as circuit design and verification.
摘要:
In a programmable logic device, some or all of the parallel interconnect resources are replaced by serial interconnect resources within the device. Some or all of the functional blocks on the device are supplemented with serial interfaces. Although this makes the functional blocks more complex, it allows a significant reduction in the area consumed by interconnect resources. This translates into a significant reduction in device power consumption. The serial interfaces may operate synchronously from a global device clock (such as a PLL). In some cases, serial interfaces that are provided in the input/output blocks for external signalling can be omitted because the serial interfaces in the functional blocks can take over the external serial interface function as well, although in those cases the serial interfaces in the functional blocks would have to be more complex because they would have to be able to operate asynchronously with external devices.
摘要:
Eight-bit ten-bit (8B10B) coding is provided in a hard intellectual property (IP) block with the capability of supporting a greater range of data rates (e.g., data rates less than, equal to, and greater than 3.125 Gbps). Each channel of high speed serial interface circuitry includes receiver circuitry having two 8B10B decoders and transmitter circuitry having two 8B10B encoders. The receiver and transmitter circuitry can be configured to operate in one of three modes of operation: cascade mode, dual channel mode, and single channel mode.
摘要:
In a programmable logic device, some or all of the parallel interconnect resources are replaced by serial interconnect resources within the device. Some or all of the functional blocks on the device are supplemented with serial interfaces. Although this makes the functional blocks more complex, it allows a significant reduction in the area consumed by interconnect resources. This translates into a significant reduction in device power consumption. The serial interfaces may operate synchronously from a global device clock (such as a PLL). In some cases, serial interfaces that are provided in the input/output blocks for external signalling can be omitted because the serial interfaces in the functional blocks can take over the external serial interface function as well, although in those cases the serial interfaces in the functional blocks would have to be more complex because they would have to be able to operate asynchronously with external devices.
摘要:
A data converter, or “gearbox,” for a padded protocol interface can perform a number of different conversions—e.g., between 64 and 66 bits, between 24 and 26 bits, or between 48 and 50 bits. This is accomplished by clocking the gearbox at different clock speeds, all derived from the same master clock (which may be recovered from the data in a receiver embodiment) using programmable dividers that allow the user to select the clock speed. When the conversion is not that one with the maximum width for which the gearbox is designed, unused bits are ignored. The converter can also find padding bits, for alignment purposes, in data of different widths, again ignoring unused bits when the data are not the widest for which the converter is designed.
摘要:
A serial interface for a programmable logic device can be operated according to various communications protocols and includes both a receiver portion and a transmitter portion. The receiver portion includes at least a word or byte alignment stage, a de-skew stage, a rate compensation or matching stage, a padded protocol decoder stage (e.g., 8B/10B decoder circuitry or 64B/66B decoder circuitry), a byte deserializer stage, a byte reorder stage, and a phase compensation stage. The transmitter portion includes at least a phase compensation stage, a byte deserializer stage, and a padded protocol encoder stage (e.g., an 8B/10B encoder circuitry or 64B/66B encoder circuitry). Each stage may have multiple occurrences of relevant circuitry. Selection circuitry, such as multiplexers, selects the appropriate stages, and circuitry within each stage, for the protocol being used.