Abstract:
A test method and apparatus employs a microfluidic device to characterize properties of a fluid. The microfluidic device has an inlet port, an outlet port, and a microchannel as part of a fluid path between the inlet port and the outlet port. While a fluid is introduced into the microchannel, the fluid temperature is maintained while the fluid pressure in the microchannel is varied to characterize the properties of the fluid in the microchannel. The properties of the fluid can relate to a scale onset condition of the fluid at the pressure of the flow through the microchannel. In one aspect, fluid pressure in the microchannel is maintained while the fluid temperature is varied to characterize the properties of the fluid. In another aspect, flow rate of the fluid through the microchannel is varied while the fluid temperature is maintained to characterize the properties of the fluid in the microchannel.
Abstract:
A technique facilitates detection and analysis of constituents, e.g. chemicals, which may be found in formation fluids and/or other types of fluids. The technique comprises intermittently introducing a first fluid and a second fluid into a channel in a manner which forms slugs of the first fluid separated by the second fluid. The intermittent fluids are flowed through the channel to create a mixing action which mixes the fluid in the slugs. The mixing increases the exchange, e.g. transfer, of the chemical constituent between the second fluid and the first fluid. The exchange aids in sensing an amount of the chemical or chemicals for analysis. In many applications, the intermittent introduction, mixing, and measuring can be performed in a subterranean environment.
Abstract:
A microfluidic apparatus has a microchannel that includes at least one vertically oriented segment with a top section having a relatively wide opening and a bottom section having a relatively narrow opening. The top section is larger in volume relative to the bottom sections, and the middle sections taper down in at least one dimension from the top section to the bottom section. One or tens or hundreds of vertically-oriented segments may be provided, and they are fluidly coupled to each other. Each segment acts as a pressure-volume-temperature (PVT) cell, and the microchannel apparatus may be used to determine a parameter of a fluid containing hydrocarbons such as the dew point of the fluid or the liquid drop-out as a function of pressure.
Abstract:
A test method and test apparatus is provided that employs a microfluidic device to characterize properties of a fluid. The microfluidic device has a first inlet port, an outlet port, and a microchannel as part of a fluid path between the first inlet port and the outlet port. While generating a flow of the fluid through the microchannel of the microfluidic device, fluid pressure at the first inlet port of the microfluidic device is measured and recorded in conjunction with varying the controlled temperature of the microchannel of the microfluidic device to characterize the properties of the fluid that flows through the microchannel of the microfluidic device. The properties of the fluid can relate to the clathrate hydrate formation condition of the fluid at the pressure of the flow through the microchannel of the microfluidic device.
Abstract:
A system for measuring asphaltene content of crude oil, includes a microfluidic chip, the microfluidic chip having a crude oil sample inlet port, a solvent port, a mixer and reactor section in fluid communication with the crude oil sample inlet port and the solvent port, and a filter in fluid communication with the mixer and reactor section, the filter having an inlet side and an outlet side, a waste port in fluid communication with the inlet side of the filter, and a product port in fluid communication with the outlet side of the filter. The system further includes an optical cell in fluid communication with the product port.
Abstract:
Embodiments presented provide for a method and apparatus for testing a sample fluid for asphaltene deposition. The apparatus provides two testing cylinders and a transfer pump to transfer fluid from the first cylinder to the second cylinder and back again while pressure is varied on the testing fluid, while a spectrometer evaluates the fluid during the pressure variation.
Abstract:
A method of determining saturate, aromatic, resin, and asphaltene (SARA) fractions of a hydrocarbon fluid sample, including:
i) microfluidic mixing that forms a mixture including the hydrocarbon fluid sample and a solvent fluid that dissolves asphaltenes; ii) performing optical spectroscopy on the hydrocarbon fluid sample-solvent fluid mixture resulting from i); iii) microfluidic mixing that forms a mixture including the hydrocarbon fluid sample and a titrant fluid that precipitates asphaltenes; iv) microfluidically precipitating asphaltenes from the hydrocarbon fluid sample-titrant fluid mixture resulting from iii); v) performing a microfluidic filtering operation that removes precipitated asphaltenes from the mixture resulting from iv) while outputting permeate; vi) performing optical spectroscopy on the permeate resulting from v); vii) determining an asphaltene fraction percentage of the hydrocarbon fluid sample based on the optical spectroscopy performed in ii) and vi); viii) sequentially separating saturate-, aromatic-, and resin-containing portions from the permeate from v); ix) for each separating of viii), measuring an optical property of the respective saturate-, aromatic-, and resin-containing portions over time; and x) determining fraction percentages of saturates, aromatics, and resins in the hydrocarbon fluid sample based on the measured optical properties of ix) and respective mass-to-optical correlation data.
Abstract:
Embodiments present a method for fluid type identification from a downhole fluid analysis that uses machine learning techniques that are trained and derived from a computer model using pressure, temperature and downhole optical characteristics of sampled fluid. The method comprises collecting optical spectral data for a downhole fluid; providing the collected optical spectral data to a trained classification module; processing the collected optical spectral data with the trained classification module configured to determine a fluid type classification; and determining a fluid type based upon the classification based upon the trained classification module.
Abstract:
Methods for determining in situ the value of a formation fluid parameter using a downhole fluid analysis (DFA) tool. The methods utilize advanced statistical learning tools to build a predictive model to estimate a fluid property given a set of input parameters. In one embodiment the fluid saturation pressure parameter is determined by using the DFA tool to obtain the fluid and to obtain weight fractions of at least C1, C6+, and CO2 of the fluid. The weight fractions and a reservoir temperature are input into a trained statistical learning machine to obtain a determination of the saturation pressure of the fluid.
Abstract:
A method of determining saturate, aromatic, resin, and asphaltene (SARA) fractions of a hydrocarbon fluid sample, including: i) microfluidic mixing that forms a mixture including the hydrocarbon fluid sample and a solvent fluid that dissolves asphaltenes; ii) performing optical spectroscopy on the hydrocarbon fluid sample-solvent fluid mixture resulting from i); iii) microfluidic mixing that forms a mixture including the hydrocarbon fluid sample and a titrant fluid that precipitates asphaltenes; iv) microfluidically precipitating asphaltenes from the hydrocarbon fluid sample-titrant fluid mixture resulting from iii); v) performing a microfluidic filtering operation that removes precipitated asphaltenes from the mixture resulting from iv) while outputting permeate; vi) performing optical spectroscopy on the permeate resulting from v); vii) determining an asphaltene fraction percentage of the hydrocarbon fluid sample based on the optical spectroscopy performed in ii) and vi); viii) sequentially separating saturate-, aromatic-, and resin-containing portions from the permeate from v); ix) for each separating of viii), measuring an optical property of the respective saturate-, aromatic-, and resin-containing portions over time; and x) determining fraction percentages of saturates, aromatics, and resins in the hydrocarbon fluid sample based on the measured optical properties of ix) and respective mass-to-optical correlation data.