Abstract:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
Abstract:
A manufacturing method of a semiconductor device includes the forming a first oxide over a substrate; depositing a first insulator over the first oxide; forming an opening reaching the first oxide in the first insulator; depositing a first oxide film in contact with the first oxide and the first insulator in the opening; depositing a first insulating film over the first oxide film by a PEALD method; depositing a first conductive film over the first insulating film; and removing part of the first oxide film, part of the first insulating film, and part of the first conductive film until a top surface of the first insulator is exposed to form a second oxide, a second insulator, and a first conductor. The deposition of the first insulating film is performed while the substrate is heated to higher than or equal to 300°.
Abstract:
A semiconductor device with high on-state current and high reliability is provided. The semiconductor device includes first to fifth insulators, first to third oxides, and first to fourth conductors; the fifth insulator includes an opening in which the second oxide is exposed; the third oxide is placed in contact with a bottom portion of the opening and a side portion of the opening; the second insulator is placed in contact with the third oxide; the third conductor is provided in contact with the second insulator; the third insulator is placed in contact with a top surface of the third conductor and the second insulator; and the fourth conductor is in contact with the third insulator and the top surface of the third conductor and placed in the opening.
Abstract:
A semiconductor device that is miniaturized and highly integrated is provided. One embodiment of the present invention is a semiconductor device including a first insulator, a second insulator, a first conductor, a second conductor, and a semiconductor layer; the first insulator includes an opening exposing the semiconductor layer; the first conductor is provided in contact with the semiconductor layer at a bottom of the opening; the second insulator is provided in contact with a top surface of the first conductor and a side surface in the opening; the second conductor is provided in contact with the top surface of the first conductor and in the opening with the second insulator therebetween; and the second insulator has a barrier property against oxygen.
Abstract:
An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
Abstract:
An imaging device suitable for detecting infrared light is provided. The imaging device includes a first layer, a second layer, a third layer, and a fourth layer, which are stacked in this order. The first layer includes an infrared-light-transmitting filter. The second layer includes single crystal silicon. The third layer includes a device-formation layer. The fourth layer includes a support substrate. The second layer includes a photoelectric-conversion device whose light-absorption layer is the single crystal silicon. The third layer includes a transistor which includes a metal oxide in its channel formation region. The photoelectric-conversion device and the transistor are electrically connected. The photoelectric-conversion device receives light which has passed through the infrared-light-transmitting filter.
Abstract:
A semiconductor device with less variations in transistor characteristics is provided. A first insulator, first and second oxide films, a first conductive film, a first insulating film, and a second conductive film are deposited and processed to form a first and second oxides, a first conductive layer, a first insulating layer, and a second conductive layer. In the process, a layer is formed to cover the first and second oxides, the first conductive layer, the first insulating layer, and the second conductive layer. The second conductive layer and the layer are removed. A second insulating layer in contact with side surfaces of the first and second oxides, the first conductive layer, and the first insulating layer is formed, and a second insulator is formed thereover. An opening reaching the second oxide is formed in the first conductive layer, the first insulating layer, the second insulating layer, and the second insulator.
Abstract:
A lithium secondary battery which has high charge-discharge capacity, can be charged and discharged at high speed, and has little deterioration in battery characteristics due to charge and discharge is provided. A negative electrode includes a current collector and a negative electrode active material layer. The current collector includes a plurality of protrusion portions extending in a substantially perpendicular direction and a base portion connected to the plurality of protrusion portions. The protrusion portions and the base portion are formed using the same material containing titanium. A top surface of the base portion and at least a side surface of the protrusion portion are covered with the negative electrode active material layer. The negative electrode active material layer may be covered with graphene.