Abstract:
A nonvolatile memory device according to an embodiment includes a substrate, a resistance change layer disposed on the substrate, a gate electrode layers disposed on the resistance change layer, and a first electrode pattern layer and a second electrode pattern layer that are disposed in the substrate and contact different portions of the resistance change layer. The resistance change layer includes movable oxygen vacancies or movable metal ions.
Abstract:
A memory system includes a non-volatile memory device and a performance manager. The performance manager activates a plurality of sub-controllers according to a setting of a host device, allocates memory regions respectively to the plurality of sub-controllers, the memory regions being included in the non-volatile memory device, and determines, according to maximum performance values and a size ratio of the memory regions, credit sets to be allocated respectively to the plurality of sub-controllers.
Abstract:
A nonvolatile memory device includes a substrate having an upper surface, and a gate structure disposed over the substrate. The gate structure includes at least one gate electrode layer pattern and at least one gate insulation layer pattern, which are alternately stacked along a first direction perpendicular to the upper surface. The gate structure extends in a second direction perpendicular to the first direction. The nonvolatile memory device includes a ferroelectric layer disposed on at least a portion of one sidewall surface of the gate structure. The one sidewall surface of the gate structure forms a plane substantially parallel to the first and second directions. The nonvolatile memory device includes a channel layer disposed on the ferroelectric layer, and a source electrode structure and a drain electrode structure disposed to contact the channel layer and spaced apart from each other in the second direction.
Abstract:
In a method of fabricating a nonvolatile memory device according an embodiment, a first tunnel oxide layer, a nitrogen supply layer, and a second tunnel oxide layer having a density lower than that of the first tunnel oxide layer are formed on a substrate. Nitrogen in the nitrogen supply layer is diffused into the second tunnel oxide layer to convert at least a portion of the second tunnel oxide layer into an oxynitride layer.
Abstract:
A semiconductor device according to an embodiment includes a substrate, a bit line structure and a source line structure respectively extending in a direction perpendicular to a surface of the substrate, a semiconductor layer disposed between the bit line structure and the source line structure on a plane parallel to the surface of the substrate, a first ferroelectric layer disposed on a first surface of the semiconductor layer, and a first gate electrode layer disposed on the first ferroelectric layer.
Abstract:
A nonvolatile memory device according to an embodiment includes a substrate having an upper surface, a source electrode structure disposed on the substrate, and a channel structure disposed over the substrate and disposed to contact one sidewall surface of the source electrode structure. In addition, the nonvolatile memory device includes a drain electrode structure disposed to contact one sidewall surface of the channel structure over the substrate. In addition, the nonvolatile memory device includes a plurality of ferroelectric structures extending in a first direction perpendicular to the substrate in the channel structure and disposed to be spaced apart from each other along the second direction perpendicular to the first direction. In addition, the nonvolatile memory device includes a gate electrode structure disposed in each of the plurality of ferroelectric structure to extend along the first direction.
Abstract:
A resistive memory apparatus includes a memory cell array including a plurality of resistive memory cells, an address decoder suitable for decoding an address signal, and accessing the memory cell array, a read/write control circuit suitable for programming data in the memory cell array or reading out data from the memory cell array, a voltage generation unit suitable for generating a program voltage and a first read voltage for a program operation and a second read voltage for a read operation and providing the voltages to the address decoder, and a controller suitable for controlling the voltage generation unit to generate the first read voltage for verification of the program operation in response to a program command, and the second read voltage higher than the first voltage in response to a read command.
Abstract:
A resistive memory device includes a memory cell array including a unit memory cell coupled between a word line and a bit line, wherein the unit memory cell includes a data storage material and a non-silicon-substrate-based type bidirectional access device coupled in series, a path setting circuit coupled between the bit line and the word line, suitable for providing a program pulse toward the bit line or the word line based on a path control signal, a forward write command, and a reverse write command, and a control unit suitable for providing a write path control signal, a forward program command, and a reverse program command based on an external command signal.
Abstract:
A phase change memory device having a multi-level and a method of driving the same are presented. The disclosed phase change memory device includes variable resistors and shifting units. The variable resistors are interchanged into set and reset states in response to an applied current. The shifting units, which are connected to the variable resistors, shift resistance distribution in the set and reset state of the variable resistors by a predetermined level.
Abstract:
A semiconductor device includes a first electrode, a ferroelectric layer disposed on the first electrode and implementing a negative capacitance, a dielectric structure disposed on the ferroelectric layer and including a first dielectric layer and a second dielectric layer that are alternately stacked, and a second electrode disposed on the dielectric structure. The ferroelectric layer and the dielectric structure are configured to be electrically connected in series to each other. The ferroelectric layer and dielectric structure together have a non-ferroelectric property.