Abstract:
The present disclosure is directed to a greenhouse or single container for plant growth coupled to the Internet of Things and including a microfluidic die for water or nutrient distribution. The microfluidic die is controllable automatically or with instructions from a remote user, based on sensors included within a growth environment.
Abstract:
One or more embodiments are directed to a microfluidic delivery system that dispenses a fluid. The microfluidic delivery system may be provided in a variety of orientations. In one embodiment, the microfluidic delivery system is vertical so that fluid being expelled opposes gravity. In another embodiment, the microfluidic delivery system is orientated sideways so that fluid being expelled has a horizontal component. In yet another embodiment, the microfluidic delivery system faces downward.
Abstract:
A microfluidic MEMS device is formed by a plurality of ejection cells each having a fluid chamber; an actuator chamber; a membrane having a first surface facing the actuator chamber and a second surface facing the fluid chamber; a piezoelectric actuator on the first surface of the membrane; and a passivation layer on the piezoelectric actuator. The membrane has an elongated area defining a longitudinal direction and a transverse direction. The passivation layer has a plurality of holes. The holes extend throughout the thickness of the passivation layer and, in a plan view, have an elongated shape with a greater dimension parallel to the longitudinal direction of the membrane and a smaller dimension parallel to the transverse direction.
Abstract:
The present disclosure provides supports for microfluidic die that allow for nozzles of the microfluidic die to be on a different plane or face a different direction from electrical contacts on the same support. This includes a rigid support having electrical contacts on a different side of the rigid support with respect to a direction of ejection of the nozzles, and a semi-flexible support or semi-rigid support that allow the electrical contacts to be moved with respect to a direction of ejection of the nozzles. The semi-flexible and semi-rigid supports allow the die to be up to and beyond a 90 degree angle with respect to a plane of the electrical contacts. The different supports allow for a variety of positions of the microfluidic die with respect to a position of the electrical contacts.
Abstract:
One or more embodiments are directed to a microfluidic assembly that includes an interconnect substrate coupled to a microfluidic die. In one embodiment, the microfluidic die includes a ledge with a plurality of bond pads. The microfluidic assembly further includes an interconnect substrate having an end resting on the ledge proximate the bond pads. In another embodiment, the interconnect substrate abuts a side surface of the ledge or is located proximate the ledge. Conductive elements couple the microfluidic die to contacts of the interconnect substrate. Encapsulant is located over the conductive elements, the bond pads, the contacts.
Abstract:
The present disclosure is directed to a ceramic substrate that includes a plurality of contact pads, a plurality of electrical traces, and a microelectromechanical die. Contacts on the die are coupled to the plurality of contact pads through the plurality of electrical traces. The substrate also includes a plurality of memory bits formed directly on the substrate. Each memory bit is coupled between a first one of the contact pads and a second one of the contact pads.
Abstract:
The present disclosure provides supports for a microfluidic die and one or more additional die including, but not limited to, microfluidic die, ASICs, MEMS devices, and sensors. This includes semi-flexible supports that allow a microfluidic die to be at a 90 degree angle with respect to another die and rigid supports that allow a microfluidic and another die to be in close proximity to each other.
Abstract:
The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.
Abstract:
The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.
Abstract:
The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.