Abstract:
A photomask for exposure includes: a transparent substrate; a light blocking pattern layer positioned on the transparent substrate; a first dielectric layer positioned on the light blocking pattern layer and including a dielectric material; and a negative refractive index layer positioned on the first dielectric layer and including a metal. A surface plasmon quasi-bound mode of the photomask for exposure overlaps a wavelength range of the light source of the light exposer which irradiates light to the photomask for exposure.
Abstract:
An optical mask for forming a pattern is provided. The optical mask includes: a substrate including a light blocking pattern formed on portions of the substrate, wherein the light blocking pattern includes a halftone layer and a light blocking layer formed on the halftone layer, and the halftone layer and the light blocking layer overlap such that at least an edge portion of the halftone layer is exposed. A pitch of the light blocking pattern may about 6 μm, and a transmission ratio of the halftone layer may range from about 10% to about 50%.
Abstract:
A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
Abstract:
An optical mask for forming a pattern is provided. The optical mask includes: a substrate including a light blocking pattern formed on portions of the substrate, wherein the light blocking pattern includes a halftone layer and a light blocking layer formed on the halftone layer, and the halftone layer and the light blocking layer overlap such that at least an edge portion of the halftone layer is exposed. A pitch of the light blocking pattern may about 6 μm, and a transmission ratio of the halftone layer may range from about 10% to about 50%.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A display device includes a reflective polarizer plate including a first substrate defining an opening area and a non-opening area, and a wire grid polarizer which is disposed on a surface of the first substrate and includes a polarizing part including a plurality of nano wire patterns which is arranged in the opening area to be spaced apart from each other, and a reflecting part including a metal film provided in the non-opening area.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.