Abstract:
A metal sheet holding device for manufacturing a pattern mask used in manufacturing processes of a flat panel displays include a first holder and second holder. The first holder includes an adhesive layer contacting edge portions of a metal sheet, and a first frame supporting the metal sheet using the adhesive layer. The second holder includes a second frame below the first frame, a supported plate positioned at the center of the second frame, and an adhered unit positioned between the central portion of a metal sheet and the supported plate. The adhered unit generates an electrostatic force or a magnetic force to hold the central portion of the metal sheet.
Abstract:
A laser processing apparatus includes a laser generator for generating laser beams, a diffraction optic element for dividing the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam number controller for controlling the number of the plurality of sub-laser beams. Accordingly, the diffractive optic element that splits a laser beam generated by the laser beam generator into a plurality of sub-laser beams and the beam number controller that controls the number of sub-laser beams are provided so that the processing speed of a processing target can be improved and, at the same time, the number of laser beams can be promptly controlled, thereby promptly forming various patterns of the processing target.
Abstract:
A mask manufacturing apparatus includes a laser irradiator, a stage, a frame, and a heat spreader sheet. The laser irradiator divides a laser beam into a plurality of sub-laser beams and irradiates the sub-laser beams to a shadow mask material which is placed over a stage. The frame is disposed over the stage to support the shadow mask material. The heat spreader sheet makes contact with the shadow mask material, absorbs heat generated from the shadow mask material, and dissipates the heat to surroundings of the shadow mask material. Accordingly, the shadow mask material is protected from overheating.
Abstract:
A laser processing apparatus includes a laser generator for generating laser beams, a diffraction optic element for dividing the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam number controller for controlling the number of the plurality of sub-laser beams. Accordingly, the diffractive optic element that splits a laser beam generated by the laser beam generator into a plurality of sub-laser beams and the beam number controller that controls the number of sub-laser beams are provided so that the processing speed of a processing target can be improved and, at the same time, the number of laser beams can be promptly controlled, thereby promptly forming various patterns of the processing target.