Abstract:
An organic light-emitting display apparatus includes an organic light-emitting diode, a driving transistor configured to control an amount of electric current flowing to the organic light-emitting diode from a power line, a compensation transistor configured to diode-connect the driving transistor in response to a voltage applied to first and second compensation gate electrodes of the compensation transistor, and a gate insulating layer between the compensation gate electrodes and a compensation active region of a compensation transistor. A layer structure of the gate insulating layer between the first compensation gate electrode and the compensation active region is different from a layer structure of the gate insulating layer between the second compensation gate electrode and the compensation active region.
Abstract:
A method of manufacturing a flexible display device includes forming a graphene adhesive layer on a carrier substrate, forming a flexible substrate on the graphene adhesive layer, forming a first barrier layer on the flexible substrate, forming a display element part on the first barrier layer, forming a protective film on the display element part, separating the flexible substrate from the carrier substrate, removing a remaining portion of the graphene adhesive layer from a surface of the flexible substrate, and forming a second barrier layer on the surface of the flexible substrate, after removing the remaining portion of the graphene adhesive layer from the surface of the flexible substrate.
Abstract:
A display apparatus includes an auxiliary wiring on a substrate, an insulating layer disposed on the auxiliary wiring and that includes a first opening that overlaps the auxiliary wiring and has a greater width than a width of the auxiliary wiring, a first electrode disposed on the insulating layer, a bank layer that includes an emission opening that overlaps the first electrode, an intermediate layer that overlaps the first electrode through the emission opening and that includes an emission layer, and a second electrode disposed on the intermediate layer, wherein the auxiliary wiring includes a plurality of sub-layers, and the second electrode contacts a side surface of any one of the plurality of sub-layers through the first opening of the insulating layer.
Abstract:
A method of manufacturing a display panel includes providing an insulating substrate that includes a hole area, a display area that surrounds the hole area, and a peripheral area adjacent to the display area, forming a semiconductor pattern in the display area, forming an insulating layer, forming contact holes in the insulating layer that expose portions of the semiconductor pattern, and forming a module hole by etching a portion of the insulating layer and a portion of the insulating substrate that overlap the hole area.
Abstract:
A display device including a plurality of pixels over a substrate, the display device includes: a pixel-defining layer covering edges of a first electrode of each of the plurality of pixels; a first spacer arranged on the pixel-defining layer and including a first portion and a second portion, the first portion of the first spacer having a width increasing toward the substrate, and the second portion of the first spacer being arranged between the first portion of the first spacer and the substrate and having a width decreasing toward the substrate; and a first hole arranged apart from the first electrode between the plurality of pixels, the first hole being formed in the second portion of the first spacer and the pixel-defining layer.
Abstract:
A composition for fabricating an organic film, an organic light-emitting display apparatus manufactured using the same, and a method of manufacturing the organic light-emitting display apparatus, the composition comprising a first compound that includes n substituents Y, and m polymerizable groups P1, wherein n is selected from 1, 2, 3, and 4; m is selected from 1, 2, 3, and 4; OP1 of the first compound is equal to or greater than 2.8 and equal to or less than 4.8; OP1 being (total number of atoms of the first compound)/{(number of carbon atoms of the first compound)−(number of oxygen atoms of the first compound)}; and RP1 of the first compound is equal to or greater than 0.01 and equal to or less than 0.46; RP1 being {(number of carbon atoms of the substituent Y)X n}/(number of carbon atoms of the first compound).
Abstract:
Provided are a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus. The method includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; arranging the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer of the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward.
Abstract:
A display panel including a glass substrate having an opening area, and a display area at least partially surrounding the opening area; a thin film transistor on the display area including a semiconductor layer and a gate electrode; a display element electrically connected to the thin film transistor; a multi-layer including an insulating layer and a lower insulating layer. The insulating layer is between the glass substrate and the display element and the lower insulating layer is between the glass substrate and the insulating layer; and a thin-film encapsulation layer covering the display element including an inorganic encapsulation layer and an organic encapsulation layer. The multi-layer includes a first groove between the opening area and the display area. A first width of a portion of the first groove in the lower insulating layer is greater than a second width of a portion of the first groove in the insulating layer.
Abstract:
A display apparatus includes a light-emitting element including a pixel electrode, an intermediate layer and an opposite electrode, a bank layer including an inorganic bank layer, a first metal bank layer and a second metal bank layer sequentially on the pixel electrode, and the inorganic bank layer, the first metal bank layer, and the second metal bank layer together defining a pixel opening of the bank layer which corresponds to the pixel electrode, an inorganic encapsulation layer on the pixel electrode and having a first refractive index, and a planarization layer on the inorganic encapsulation layer and having a second refractive index which is greater than the first refractive index.
Abstract:
A display device including a display area and a non-display area further includes a base layer including a first surface and a second surface opposite to the first surface, the base layer having, in the non-display area, an opening portion penetrating the first surface and the second surface; a pad unit including a terminal on the first surface, the pad unit extending from the first surface to the opening portion; a connection line connected to the terminal on the first surface, the connection line extending from the non-display area to the display area; an insulating layer covering the terminal and the connection line; a thin-film transistor including a semiconductor layer on the insulating layer, the thin-film transistor being connected to the connection line; and a display element connected to the thin-film transistor, the display element being in the display area.