Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
Abstract:
There is provided a multilayer ceramic electronic component embedded in a board including: a ceramic body including dielectric layers; an active layer including a plurality of first and second internal electrodes, having the dielectric layer therebetween, to thereby form capacitance; upper and lower cover layers formed in upper and lower portions of the active layer; and first and second external electrodes formed in both ends of the ceramic body, wherein the first external electrode includes a first base electrode and a first terminal electrode formed on the first base electrode, the second external electrode includes a second base electrode and a second terminal electrode formed on the second base electrode, and in the case that a thickness of the upper cover layer is tc1 and a thickness of the lower cover layer is tc2, 0.10≦tc1/tc2≦1.00 is satisfied.
Abstract:
A multilayer ceramic electronic component to be embedded in a board includes: a ceramic body including dielectric layers; first and second internal electrodes formed in the ceramic body; and first-polarity external electrodes connected to the first internal electrodes, and second-polarity external electrodes connected to the second internal electrodes, wherein the number of the first-polarity external electrodes and the number of the second-polarity external electrodes may be two or more, the first-polarity and second-polarity external electrodes may include first-polarity and second-polarity base electrodes and first-polarity and second-polarity terminal electrodes formed on the first-polarity and second-polarity base electrodes, respectively, when L denotes a length of the ceramic body and W denotes a width thereof, W/L≧0.6 may be satisfied, and a width BW of each of the first-polarity and second-polarity external electrodes formed on the first and second main surfaces of the ceramic body may satisfy 150 μm≦BW≦350 μm.
Abstract:
There is provided a multilayer ceramic electronic part to be embedded in a board, the multilayer ceramic electronic part including: a ceramic body including dielectric layers; first and second internal electrodes disposed in the ceramic body; first and second external electrodes formed on the respective end portions of the ceramic body, and a third external electrode formed on first and second main surfaces of the ceramic body, wherein an outermost first internal electrode among the first internal electrodes is connected to the first and second external electrodes through at least one first via, and the second internal electrodes are connected to the third external electrode through at least one second via.
Abstract:
There is provided a multilayer ceramic electronic component to be embedded in a board, including a ceramic body including dielectric layers and having first and second main surfaces facing each other, first and second side surfaces facing each other, and first and second end surfaces facing each other, an active layer including a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body with the dielectric layers interposed therebetween, to form capacitance therein, upper and lower cover layers formed on upper and lower portions of the active layer, and first and second external electrodes formed on both end surfaces of the ceramic body, wherein when a thickness of the upper or lower cover layer is defined as tc, 4 μm≦tc≦20 μm may be satisfied.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body and first and second external electrodes on external surfaces of the ceramic body. The ceramic body includes first and second internal electrodes facing each other with dielectric layers interposed therebetween. The ceramic body includes an active portion in which capacitance is formed and cover portions on upper and lower surfaces of the active portion, respectively. The ratio of the thickness of the first and second external electrodes to the thickness of the cover portion is proportional to the inverse of the cube root of the ratio of the Young's Modulus of each of the first and second external electrodes to the Young's modulus of the cover portion.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween; first and second through electrodes penetrating the body, connected to the first and second internal electrodes, respectively, and including nickel; first and second external electrodes, and connected to the first through electrode; and third and fourth external electrodes spaced apart from the first and second external electrodes, and connected to the second through electrode. Each of the first to fourth external electrodes includes a sintered electrode including nickel, and a first plating layer and a second plating layer stacked on the sintered electrode in order.
Abstract:
A multilayer capacitor includes: a first internal electrode layer including first and second internal electrodes disposed to face each other with an insulating portion interposed therebetween; a second internal electrode layer including a third internal electrode and a lead portion connected to the third internal electrode; a body including the first and second internal electrode layers alternately disposed with respective dielectric layers interposed therebetween; first and second external electrodes disposed on the body to be connected to the first and second internal electrodes, respectively; and a third external electrode disposed on the body to be connected to the lead portion.
Abstract:
A capacitor component includes a body including first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween to be exposed to the third and fourth surfaces of the body, respectively; first and second conductive layers covering the third and fourth surfaces and connected to the first and second internal electrodes, respectively; first and second insulating layers covering the first and second conductive layers, respectively; first and second band portions spaced apart from each other on the second surface of the body; first and second external electrodes covering a portion of the first and second band portions and the first insulating layer, respectively; and third and fourth external electrodes covering a portion of the first and second insulating layers and a portion of the first surface of the body, respectively; and a method of manufacturing the same.
Abstract:
There is provided a multilayer ceramic electronic component embedded in a board including: a ceramic body including dielectric layers; first and second internal electrodes; and first and second external electrodes formed on first and second side surfaces of the ceramic body, respectively, wherein the first external electrode includes a first electrode layer and a first metal layer formed on the first electrode layer, the second external electrode includes a second electrode layer and a second metal layer formed on the second electrode layer, the first and second external electrodes are formed to be extended to first main surface of the ceramic body, and when a maximum width and a minimum width of at least one of the first and second external electrodes formed on the first main surface are defined as BWmax and BWmin, respectively, 0≤BWmax−BWmin≤100 μm is satisfied.