Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween; first and second through electrodes penetrating the body, connected to the first and second internal electrodes, respectively, and including nickel; first and second external electrodes, and connected to the first through electrode; and third and fourth external electrodes spaced apart from the first and second external electrodes, and connected to the second through electrode. Each of the first to fourth external electrodes includes a sintered electrode including nickel, and a first plating layer and a second plating layer stacked on the sintered electrode in order.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
Abstract:
A capacitor includes a body including a plurality of dielectric layers, first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween, and first and second insulating regions. The first insulating region is disposed in each of the first internal electrodes and includes a first connection electrode disposed therein. The second insulating region is disposed in each of the second internal electrodes and includes a second connection electrode disposed therein. The products D1×Td and D2×Td are greater than 20 μm2, where Td is a thickness of the dielectric layer, and D1 and D2 are widths of the first and second insulating regions, respectively.
Abstract:
There is provided a multilayer ceramic electronic part to be embedded in a board including: a ceramic body including dielectric layers; an active layer including a plurality of first and second internal electrodes; upper and lower cover layers disposed on and below the active layer, respectively; and first and second external electrodes formed on both end portions of the ceramic body, wherein a first internal electrode positioned at an outermost position among the first electrodes is connected to the first external electrode by at least one first via extended to at least one of first and second main surfaces of the ceramic body, and a second internal electrode positioned at an outermost position among the second internal electrodes is connected to the second external electrode by at least one second via extended to at least one of first and second main surfaces of the ceramic body.
Abstract:
There is provided an embedded multilayer ceramic electronic component including a ceramic body including dielectric layers, having first and second main surfaces, first and second side surfaces, and first and second end surfaces, and having a thickness of 250 μm or less, first and second internal electrodes alternately exposed to the first or second side surface, and first and second external electrodes formed on the first and second side surfaces, wherein the first external electrode includes a first electrode layer and a first metal layer, the second external electrode includes a second electrode layer and a second metal layer, the first and second external electrodes are extended onto the first and second main surfaces, and widths of the first and second external electrodes formed on the first and second main surfaces are different from each other.
Abstract:
A capacitor component includes: a body including first and second internal electrodes alternately disposed in a first direction; first and second connection electrodes extending in the first direction in the body, respectively connected to the first and second internal electrodes, and opposing each other in a second direction; and first and second external electrodes disposed on one surface of the body and respectively connected to the first and second connection electrodes and each include an extended pattern disposed at one end portion on the one surface in the second direction and extending in a third direction, and a connection pattern extending, in the second direction, from a region spaced apart from both ends of the extended pattern in the third direction and connected to one of the first and second connection electrodes in a region spaced apart from opposite ends of the extended pattern in the third direction.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body and first and second external electrodes on external surfaces of the ceramic body. The ceramic body includes first and second internal electrodes facing each other with dielectric layers interposed therebetween. The ceramic body includes an active portion in which capacitance is formed and cover portions on upper and lower surfaces of the active portion, respectively. The ratio of the thickness of the first and second external electrodes to the thickness of the cover portion is proportional to the inverse of the cube root of the ratio of the Young's Modulus of each of the first and second external electrodes to the Young's modulus of the cover portion.
Abstract:
A capacitor component includes a plurality of unit laminates, each comprising a body with a stacked structure including a plurality of internal electrodes and connection electrodes that extend in a stacking direction of the body and electrically connect to the plurality of internal electrodes, and pad portions between adjacent unit laminates to electrically connect the respective connection electrodes of the unit laminates above and below the pad portions to each other.
Abstract:
There are provided a multilayer ceramic capacitor and a circuit board having the same. The multilayer ceramic capacitor may include: first and second internal electrodes connected to first and second external electrodes, respectively, and disposed to face each other; and third and fourth internal electrodes connected to the first and second external electrodes, respectively, and disposed to face each other, a connection area of the third and fourth internal electrodes with the first and second external electrodes being different from that of the first and second internal electrodes with the first and second external electrodes, and the first and second external electrodes including first and second conductive layers disposed in inner portions thereof and first and second conductive resin layers disposed in outer portions thereof, respectively.
Abstract:
There is provided a multilayer ceramic electronic component to be embedded in a board including: a ceramic body including dielectric layers and having first and second main surfaces opposing one another, first and second lateral surfaces opposing one another, and first and second end surfaces opposing one another; first and second internal electrodes stacked to be spaced apart from both end surfaces of the ceramic body at a predetermined distance with the dielectric layers interposed therebetween, respectively; and first and second external electrodes formed in both end portions of the ceramic body, wherein the first and second external electrodes include first and second base electrodes and first and second terminal electrodes formed on the first and second base electrodes, respectively, and a non-conductive paste layer is formed on both lateral surfaces of the ceramic body.