Abstract:
A semiconductor device includes a bit line structure located on a semiconductor substrate, an outer bit line spacer located on a first side surface of the bit line structure, an inner bit line spacer including a first part located between the bit line structure and the outer bit line spacer and a second part located between the semiconductor substrate and the outer bit line spacer, and a block bit line spacer located between the outer bit line spacer and the second part of the inner bit line spacer. A first air-gap is defined by the outer bit line spacer, the inner bit line spacer, and the block bit line spacer.
Abstract:
A semiconductor device includes a semiconductor substrate including a chip region and an edge region around the chip region, a lower insulating layer on the semiconductor substrate, a chip pad on the lower insulating layer on the chip region, an upper insulating layer provided on the lower insulating layer to cover the chip pad, the upper and different insulating layers including different materials, and a redistribution chip pad on the chip region and connected to the chip pad. The upper insulating layer includes a first portion on the chip region having a first thickness, a second portion on the edge region having a second thickness, and a third portion on the edge region, the third portion extending from the second portion, spaced from the first portion, and having a decreasing thickness away from the second portion. The second thickness is smaller than the first thickness.
Abstract:
A method of forming a semiconductor device includes forming a molding layer and a supporter layer on a substrate including an etch stop layer, forming a mask layer on the supporter layer, forming a first edge blocking layer on the mask layer, forming a mask pattern by etching the mask layer, forming a hole, forming a lower electrode in the hole, forming a supporter mask layer on the supporter layer, forming a second edge blocking layer on the supporter mask layer, forming a supporter mask pattern by patterning the supporter mask layer, forming a supporter opening passing through the supporter layer, removing the molding layer, forming a capacitor dielectric layer and an upper electrode on the lower electrode, forming an interlayer insulating layer on the upper electrode, and planarizing the interlayer insulating layer. The hole passes through the supporter layer, the molding layer and the etch stop layer.
Abstract:
A capacitor structure includes a plurality of lower electrodes, a support pattern structure, a dielectric layer, and an upper electrode. The lower electrodes are formed on a substrate. The support pattern structure is formed between the lower electrodes, and includes a lower support pattern and an upper support pattern structure over the lower support pattern. The upper support pattern structure includes a plurality of upper support patterns spaced apart from each other in a direction substantially perpendicular to a top surface of the substrate. The dielectric layer is formed on the lower electrodes and the support pattern structure. The upper electrode is formed on the dielectric layer. A sum of thicknesses of the plurality of upper support patterns in the direction substantially perpendicular to the top surface of the substrate is about 35% to about 85% of a total thickness of the upper support pattern structure.
Abstract:
A semiconductor device includes a bit line structure located on a semiconductor substrate, an outer bit line spacer located on a first side surface of the bit line structure, an inner bit line spacer including a first part located between the bit line structure and the outer bit line spacer and a second part located between the semiconductor substrate and the outer bit line spacer, and a block bit line spacer located between the outer bit line spacer and the second part of the inner bit line spacer. A first air-gap is defined by the outer bit line spacer, the inner bit line spacer, and the block bit line spacer.
Abstract:
A semiconductor device includes a semiconductor substrate including a chip region and an edge region around the chip region, a lower insulating layer on the semiconductor substrate, a chip pad on the lower insulating layer on the chip region, an upper insulating layer provided on the lower insulating layer to cover the chip pad, the upper and different insulating layers including different materials, and a redistribution chip pad on the chip region and connected to the chip pad. The upper insulating layer includes a first portion on the chip region having a first thickness, a second portion on the edge region having a second thickness, and a third portion on the edge region, the third portion extending from the second portion, spaced from the first portion, and having a decreasing thickness away from the second portion. The second thickness is smaller than the first thickness.
Abstract:
A semiconductor device may include a substrate including a cell region and a peripheral region, a gate stack on the peripheral region, an interlayer insulating layer on the gate stack, peripheral circuit interconnection lines on the interlayer insulating layer, and an interconnection insulating pattern between the peripheral circuit interconnection lines. The interconnection insulating pattern may include a pair of vertical portions spaced apart from each other in a first direction parallel to a top surface of the substrate and a connecting portion connecting the vertical portions to each other. Each of the vertical portions of the interconnection insulating pattern may have a first thickness at a same level as top surfaces of the peripheral circuit interconnection lines and a second thickness at a same level as bottom surfaces of the peripheral circuit interconnection lines. The first thickness may be substantially equal to the second thickness.
Abstract:
A semiconductor device includes a semiconductor substrate and a connection terminal, including a base pillar, on the semiconductor substrate. An insulation layer is formed on the semiconductor substrate, the insulation layer including an opening in the insulation layer through which the base pillar extends, wherein a side wall of the insulation layer defining the opening includes a horizontal step at a level that is lower than an uppermost portion of the base pillar.
Abstract:
The semiconductor device includes a substrate including an integrated circuit and a contact that are electrically connected to each other, an insulation layer covering the substrate and including metal lines, and a through electrode electrically connected to the integrated circuit. The insulation layer includes an interlayer dielectric layer on the substrate and an intermetal dielectric layer on the interlayer dielectric layer. The metal lines include a first metal line in the interlayer dielectric layer and electrically connected to the contact, and a plurality of second metal lines in the intermetal dielectric layer and electrically connected to the first metal line and the through electrode. The through electrode includes a top surface higher than a top surface of the contact.
Abstract:
A semiconductor memory device includes a word line buried in an upper portion of a substrate and extending in a first direction, and a word line contact plug connected to the word line. An end portion of the word line includes a contact surface exposed in the first direction, and the word line contact plug is connected to the contact surface.