Abstract:
A method of fabricating a single-layer graphene on a silicon carbide (SiC) wafer includes forming a plurality of graphene layers on the SiC wafer such that the plurality of graphene layers are on a buffer layer of the SiC wafer, the buffer layer being formed of carbon; removing the plurality of graphene layers from the buffer layer; and converting the buffer layer to a single-layer graphene.
Abstract:
A method of preparing crystalline graphene includes performing a first thermal treatment including supplying heat to an inorganic substrate in a reactor, introducing a vapor carbon supply source into the reactor during the first thermal treatment to form activated carbon, and binding of the activated carbon on the inorganic substrate to grow the crystalline graphene.
Abstract:
Example embodiments relate to a stacking structure having a material layer formed on a graphene layer, and a method of forming the material layer on the graphene layer. In the stacking structure, when the material layer is formed on the graphene layer by using an ALD method, an intermediate layer as a seed layer may be formed on the graphene layer by using a linear type precursor.
Abstract:
A method of directly growing graphene of a graphene-layered structure, the method including ion-implanting at least one ion of a nitrogen ion and an oxygen ion on a surface of a silicon carbide (SiC) thin film to form an ion implantation layer in the SiC thin film; and heat treating the SiC thin film with the ion implantation layer formed therein to graphenize a SiC surface layer existing on the ion implantation layer.
Abstract:
A hydrophobic organic layer may be formed on a surface of a graphene doped with a dopant to improve stability of the doped graphene with respect to moisture and temperature. Thus, the transparent electrode having the doped graphene containing the hydrophobic organic layer may be usefully applied in solar cells or display devices.