Abstract:
A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix; a plurality of word lines commonly coupling the control gates of the plural memory cell transistors present in a identical first direction; a plurality of source lines commonly coupling the sources of the plural memory cell transistors present in the identical first direction; a plurality of bit lines commonly coupling the drains of the plural memory cell transistors present in a identical second direction intersecting the first direction; a first transistor having a drain coupled to the source line; a second transistor having a drain coupled to a source of the first transistor, a gate coupled to the word line and a source grounded; and a control line commonly coupling the gates of the plural first transistors.
Abstract:
A nonvolatile semiconductor memory device including a memory cell array of memory cells arranged in a matrix, each of which includes a selecting transistor and a memory cell transistor; a column decoder controlling the potential of bit lines; a voltage application circuit controlling the potential of the first word lines; a first row decoder controlling the potential of the second word lines; and a second row decoder controlling the potential of the source line. The column decoder is formed of a circuit whose withstand voltage is lower than the voltage application circuit and the second row decoder.
Abstract:
A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix; a plurality of word lines commonly coupling the control gates of the plural memory cell transistors present in a identical first direction; a plurality of source lines commonly coupling the sources of the plural memory cell transistors present in the identical first direction; a plurality of bit lines commonly coupling the drains of the plural memory cell transistors present in a identical second direction intersecting the first direction; a first transistor having a drain coupled to the source line; a second transistor having a drain coupled to a source of the first transistor, a gate coupled to the word line and a source grounded; and a control line commonly coupling the gates of the plural first transistors.
Abstract:
A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix; a plurality of word lines commonly coupling the control gates of the plural memory cell transistors present in a identical first direction; a plurality of source lines commonly coupling the sources of the plural memory cell transistors present in the identical first direction; a plurality of bit lines commonly coupling the drains of the plural memory cell transistors present in a identical second direction intersecting the first direction; a first transistor having a drain coupled to the source line; a second transistor having a drain coupled to a source of the first transistor, a gate coupled to the word line and a source grounded; and a control line commonly coupling the gates of the plural first transistors.
Abstract:
A multiple dual bit integrated circuit system is provided that includes forming first address lines in a semiconductor substrate and forming a charge-trapping layer over the semiconductor substrate. A semiconductor layer is formed over the charge-trapping layer and second address lines are formed in the semiconductor layer to form a plurality of dual bit locations.
Abstract:
A memory device (100) may include a substrate (110), a dielectric layer (210) formed on the substrate (110) and a charge storage element (220) formed on the dielectric layer (210). The memory device (100) may also include an inter-gate dielectric (230) formed on the charge storage element (220), a barrier layer (240) formed on the inter-gate dielectric (230) and a control gate (250) formed on the barrier layer (240). The barrier layer (240) prevents reaction between the control gate (250) and the inter-gate dielectric (230).
Abstract:
Disclosed are a positioning method and a board for swiftly and accurately adjusting the position of a warpage-preventive rail for preventing warpage of the board in flow soldering. A mark of a width B provided with a slit having a width A in a direction perpendicular to a dip direction indicated by an arrow is silk-screen printed at an end of a surface opposite to a flow solder surface of a board. The width B of the mark is set to such a value that an operator who adjusts the position can easily recognize the mark. The slit is formed on a surface opposite to a support band where the upper surface of the warpage-preventive rail supports the board, and the width A of the slit is set to a value approximately equal to the width of the upper surface of the warpage-preventive rail.
Abstract:
Novel fabrication methods permit concurrently forming wordlines, select gates and array source lines in NAND Flash. One method forms oxide and nitride layers of an ONO stack, implants dopants into a source line region to form and unite a source line structure to a source/drain region, forms another oxide and a high-dielectric over the nitride layer, removes the ONOA stack in the source line region, forms a gate oxide in the periphery, and forms an opening in the ONOA stack in an array source line region. The method deposits and selectively removes polysilicon and the high-dielectric concurrently forming wordline and select drain gate structures in bitline contact regions, and select source gate and source line structures in source line regions. The bitline and source line contact regions are implanted to form the source line structure in the source line region and unite the source/drain regions of select source gate structures.
Abstract:
A first decision process, which reads data from a memory cell under a first deciding condition to decide pass/fail and applies a signal to the memory cell to change an amount of charge stored in the memory cell if the data is decided as fail, and a second decision process, which reads the data from the memory cell under a second deciding condition that is relaxed rather than the first deciding condition to decide the pass/fail, are executed, and then the processes are repeated from the first decision process when the data is decided as fail in the second decision process.
Abstract:
The present invention provides a method for programming a selected bit in a memory cell of a non-volatile dual bit flash memory device. The method includes applying a positive voltage to a bit line associated with the selected bit and applying another positive voltage to a word line associated with the selected bit. Next, a positive voltage is applied to a second bit line associated with a complementary bit that shares the memory cell with the selected bit. A positive voltage is also applied to a third bit line that is adjacent to the second bit line and removed from the bit line associated with the selected bit by the second bit line. Applying a negative voltage to the word line then erases the complementary bit, but not its adjacent non-selected bit. The programming cycle is repeated until a desired threshold voltage is obtained.