Deflectable micromirrors with stopping mechanisms
    12.
    发明授权
    Deflectable micromirrors with stopping mechanisms 有权
    具有停止机构的偏转微镜

    公开(公告)号:US06741383B2

    公开(公告)日:2004-05-25

    申请号:US10155744

    申请日:2002-05-24

    CPC classification number: G02B26/0841

    Abstract: A spatial light modulator having a micromirror and one or more deflection limiting mechanisms, and a process for fabrication therefor. In one embodiment, the mirror support structure has a deflection stopping mechanism that limits the tilt angle of the reflective plate. Alternatively, a deflection stopping mechanism can be provided separate from the mirror support structure. The deflection stopping mechanism can be used in conjunction with one or more additional stopping mechanisms such as the abutment of a portion of the reflective plate against the substrate upon which it was constructed and/or abutment of the micromirror on a surface or structure of the circuit substrate.

    Abstract translation: 具有微反射镜和一个或多个偏转限制机构的空间光调制器及其制造方法。 在一个实施例中,反射镜支撑结构具有限制反射板的倾斜角度的偏转停止机构。 或者,偏转止动机构可以与镜支撑结构分开设置。 偏转止动机构可以与一个或多个附加止动机构结合使用,例如反射板的一部分抵靠其上构造的基板和/或微镜在电路的表面或结构上的邻接 基质。

    Projection system and mirror elements for improved contrast ratio in spatial light modulators

    公开(公告)号:US06523961B2

    公开(公告)日:2003-02-25

    申请号:US09732445

    申请日:2000-12-07

    CPC classification number: G02B26/0841 B82Y30/00

    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the projection optics, in the present invention, mirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, are not however, orthogonal to any substantial portion of sides of the individual mirrors in the array. Orthogonal sides cause incident light to diffract along the direction of mirror switching, and result in light ‘leakage’ into the on-state even if the mirror is in the off-state. This light diffraction decreases the contrast ratio of the mirror. The mirrors of the present invention result in an improved contrast ratio, and the arrangement of the light source to mirror array in the present invention results in a more compact system.

    Method and forming a micromirror array device with a small pitch size
    15.
    发明授权
    Method and forming a micromirror array device with a small pitch size 有权
    形成具有小间距尺寸的微镜阵列器件的方法

    公开(公告)号:US07422920B2

    公开(公告)日:2008-09-09

    申请号:US11388116

    申请日:2006-03-23

    CPC classification number: B82Y30/00 G02B26/0841 H04N5/7458

    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant.

    Abstract translation: 公开了一种空间光调制器,以及用于制造这样的调制器的方法,该调制器包括微镜器件阵列。 根据所使用的光源确定中心到中心的距离和相邻的微反射镜装置之间的间隙,以优化光学效率和性能质量。 微反射镜装置包括形成在基底上的铰链支撑件和由铰链支撑件保持的铰链。 镜板通过触点连接到铰链,并且根据镜板的期望的最大旋转角度,相邻微镜之间的最佳间隙和间距来确定镜板和铰链之间的距离。 在制造这种空间光调制器的方法中,将一个牺牲层沉积在衬底上,随后形成镜板,并且另一牺牲层沉积在镜板上,随后形成铰链支架。 通过具有自发气相化学蚀刻剂的相邻反射镜装置之间的小间隙去除两个牺牲层。

    Spatial light modulators with light blocking/absorbing areas
    16.
    发明授权
    Spatial light modulators with light blocking/absorbing areas 有权
    具有遮光/吸收区域的空间光调制器

    公开(公告)号:US07405860B2

    公开(公告)日:2008-07-29

    申请号:US11076640

    申请日:2005-03-09

    Abstract: A projection system, a spatial light modulator, and a method for forming a micromirror array such as for a projection display are disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micro-mirror array. The two substrates can be bonded at the wafer level after depositing a getter material and/or solid or liquid lubricant on one or both of the wafers if desired. In one embodiment of the invention, one of the substrates is a light transmissive substrate and a light absorbing layer is provided on the light transmissive substrate to selectively block light from passing through the substrate. The light absorbing layer can form a pattern, such as a frame around an array of micro-mirrors.

    Abstract translation: 公开了投影系统,空间光调制器和用于形成诸如投影显示器的微镜阵列的方法。 空间光调制器可以具有与包括微镜阵列的基板之一粘合在一起的两个基板。 如果需要,在沉积吸气剂材料和/或固体或液体润滑剂在一个或两个晶片上之后,两个基底可以在晶片层上结合。 在本发明的一个实施例中,一个基板是透光基板,并且在透光基板上设置光吸收层,以选择性地阻挡光通过基板。 光吸收层可以形成图案,例如围绕微镜阵列的框架。

    Apparatus and method for detecting an endpoint in a vapor phase etch
    17.
    发明授权
    Apparatus and method for detecting an endpoint in a vapor phase etch 有权
    用于检测气相蚀刻中的端点的装置和方法

    公开(公告)号:US07189332B2

    公开(公告)日:2007-03-13

    申请号:US10269149

    申请日:2002-10-11

    Abstract: Processes for the removal of a layer or region from a workpiece material by contact with a process gas in the manufacture of a microstructure are enhanced by the ability to accurately determine the endpoint of the removal step. A vapor phase etchant is used to remove a material that has been deposited on a substrate, with or without other deposited structure thereon. By creating an impedance at the exit of an etching chamber (or downstream thereof), as the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the endpoint of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber.

    Abstract translation: 通过与制造微结构中的工艺气体接触从工件材料去除层或区域的工艺通过精确地确定去除步骤的终点的能力增强。 气相蚀刻剂用于去除已经沉积在基底上的材料,其上具有或不具有其它沉积结构。 通过在蚀刻室(或其下游)的出口处产生阻抗,当气相蚀刻剂从蚀刻室通过时,监测蚀刻反应的气态产物,并且可以确定去除过程的终点。 气相蚀刻工艺可以流过,流过和脉冲的组合,或再循环回蚀刻室。

    Micromirror array device with a small pitch size
    18.
    发明授权
    Micromirror array device with a small pitch size 有权
    具有小间距尺寸的微镜阵列器件

    公开(公告)号:US07019376B2

    公开(公告)日:2006-03-28

    申请号:US10627155

    申请日:2003-07-24

    CPC classification number: B82Y30/00 G02B26/0841 H04N5/7458

    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.

    Abstract translation: 公开了一种空间光调制器,以及用于制造这样的调制器的方法,该调制器包括微镜器件阵列。 根据所使用的光源确定中心到中心的距离和相邻的微反射镜装置之间的间隙,以优化光学效率和性能质量。 微反射镜装置包括形成在基底上的铰链支撑件和由铰链支撑件保持的铰链。 镜板通过触点连接到铰链,并且根据镜板的期望的最大旋转角度,相邻微镜之间的最佳间隙和间距来确定镜板和铰链之间的距离。 在制造这种空间光调制器的方法中,将一个牺牲层沉积在衬底上,随后形成镜板,并且另一牺牲层沉积在镜板上,随后形成铰链支架。 通过具有自发气相化学蚀刻剂的相邻反射镜装置之间的小间隙去除两个牺牲层。 还公开了一种投影系统,其包括这样的空间光调制器以及光源,聚光光学器件,其中来自光源的光聚焦到微镜阵列上,用于投射从微镜阵列反射的光的投影光学器件 以及用于选择性地致动阵列中的微镜的控制器。

    Micromirror having reduced space between hinge and mirror plate of the micromirror
    19.
    发明授权
    Micromirror having reduced space between hinge and mirror plate of the micromirror 有权
    微镜具有减小微镜的铰链和镜板之间的空间

    公开(公告)号:US06980347B2

    公开(公告)日:2005-12-27

    申请号:US10627303

    申请日:2003-07-24

    CPC classification number: G02B26/0841 B82Y30/00

    Abstract: A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.

    Abstract translation: 公开了一种空间光调制器,以及用于制造这样的调制器的方法,该调制器包括微镜器件阵列。 根据所使用的光源确定中心到中心的距离和相邻的微反射镜装置之间的间隙,以优化光学效率和性能质量。 微反射镜装置包括形成在基底上的铰链支撑件和由铰链支撑件保持的铰链。 镜板通过触点连接到铰链,并且根据镜板的期望的最大旋转角度,相邻微镜之间的最佳间隙和间距来确定镜板和铰链之间的距离。 在制造这种空间光调制器的方法中,将一个牺牲层沉积在衬底上,随后形成镜板,并且另一牺牲层沉积在镜板上,随后形成铰链支架。 通过具有自发气相化学蚀刻剂的相邻反射镜装置之间的小间隙去除两个牺牲层。 还公开了一种投影系统,其包括这样的空间光调制器以及光源,聚光光学器件,其中来自光源的光聚焦到微镜阵列上,用于投射从微镜阵列反射的光的投影光学器件 以及用于选择性地致动阵列中的微镜的控制器。

Patent Agency Ranking