Abstract:
An object is to provide a photosensor utilizing an oxide semiconductor in which a refreshing operation is unnecessary, a semiconductor device provided with the photosensor, and a light measurement method utilizing the photosensor. It is found that a constant gate current can be obtained by applying a gate voltage in a pulsed manner to a transistor including a channel formed using an oxide semiconductor, and this is applied to a photosensor. Since a refreshing operation of the photosensor is unnecessary, it is possible to measure the illuminance of light with small power consumption through a high-speed and easy measurement procedure. A transistor utilizing an oxide semiconductor having a relatively high mobility, a small S value, and a small off-state current can form a photosensor; therefore, a multifunction semiconductor device can be obtained through a small number of steps.
Abstract:
One object of the present invention is to provide a regulator circuit with an improved noise margin. In a regulator circuit including a bias circuit generating a reference voltage on the basis of the potential difference between a first power supply terminal and a second power supply terminal, and a voltage regulator outputting a potential to an output terminal on the basis of a reference potential input from the bias circuit, a bypass capacitor is provided between a power supply terminal and a node to which a gate of a transistor included in the bias circuit is connected.
Abstract:
To prevent damage on an element even when a voltage high enough to break the element is input. A semiconductor device of the invention operates with a first voltage and includes a protection circuit which changes the value of the first voltage when the absolute value of the first voltage is higher than a reference value. The protection circuit includes: a control signal generation circuit generating a second voltage based on the first voltage and outputting the generated second voltage; and a voltage control circuit. The voltage control circuit includes a transistor which has a source, a drain, and a gate, and which is turned on or off depending on the second voltage input to the gate and thus controls whether the value of the first voltage is changed based on the amount of current flowing between the source and the drain. The transistor also includes an oxide semiconductor layer.
Abstract:
A power receiving device and a power feeding system which are capable of performing communication and power feeding at the same time are provided. Further, a power receiving device and a power feeding system which are capable of stably performing communication during power feeding are provided. One embodiment of the present invention relates to a power receiving device which includes an antenna for communication and power feeding that receives AC power, a rectifier circuit that rectifies the received AC power including the modulation signal into DC power, a smoothing circuit that smoothes the resulting DC power, a power storage device that stores the smoothed DC power, a communication control unit that analyzes the modulation signal included in the AC power, and a transformer that is positioned between the antenna and the rectifier circuit and changes a reference potential of the AC power, and a power feeding device.
Abstract:
There is provided a power transmission device which includes an antenna receiving a reflected power from a power receiving device, a power detection unit detecting a value of the reflected power received by the antenna, a control circuit determining a power adjustment value in accordance with the value of the reflected power, a power adjustment unit to which the reflected power whose value is detected is input and which adjusts impedance in accordance with the power adjustment value determined by the control circuit, and a demodulation circuit to which the reflected power having the power adjustment value determined by the control circuit is input via the power adjustment unit having the adjusted impedance, and relates to a power feeding system including the power transmission device.
Abstract:
When a portable electronic appliance is provided with two systems, a wireless power-feeding system and a wireless communication system, each system requires two power-receiving devices, a coil and an antenna, leading to a problem of increased electronic appliance size and cost. Wireless power feeding employs the resonance method and uses a resonance coil using the resonance method and a power-receiving coil that receives power from the resonance coil. At least one of the resonance coil and the power-receiving coil can also be used as an antenna for wireless communication. Thus, a power-receiving device that can be used for two systems, wireless power feeding and wireless communication, can be provided.
Abstract:
An object is to provide a power feeding device, a power feeding system, and a power feeding method which are more convenient for a power feeding user at the power receiving end. The power feeding device includes a means of controlling a frequency of a power signal transmitted to a power receiver, based on a proportion of signals, among power signals output to an antenna circuit, that return from the power receiver to the antenna circuit without feeding power to the power receiver.
Abstract:
An object is to provide a wireless power feeding system using the resonance method, which can increase power transmission efficiency. The wireless power feeding system includes a power transmission coil electrically connected to a high-frequency power supply, a power transmission resonance coil for transmitting power by electromagnetic induction with the power transmission coil, a power reception resonance coil for exciting high-frequency power by magnetic resonance, a load coil for exciting high-frequency power by electromagnetic induction with the power reception resonance coil, a load, and a variable element. The load includes a microprocessor for controlling the impedance of the load, a battery charger, and a battery. The battery charger is configured to charge the battery with the high-frequency power excited by the load coil.
Abstract:
To prevent damage on an element even when a voltage high enough to break the element is input. A semiconductor device of the invention operates with a first voltage and includes a protection circuit which changes the value of the first voltage when the absolute value of the first voltage is higher than a reference value. The protection circuit includes: a control signal generation circuit generating a second voltage based on the first voltage and outputting the generated second voltage; and a voltage control circuit. The voltage control circuit includes a transistor which has a source, a drain, and a gate, and which is turned on or off depending on the second voltage input to the gate and thus controls whether the value of the first voltage is changed based on the amount of current flowing between the source and the drain. The transistor also includes an oxide semiconductor layer.
Abstract:
A modulation circuit includes a load and a transistor serving as a switch. The transistor has an oxide semiconductor layer in which hydrogen concentration is 5×1019/cm3 or less. The off-state current of the transistor is 1×10−13 A or less. A modulation circuit includes a load, a transistor serving as a switch, and a diode. The load, the transistor, and the diode are connected in series between the terminals of an antenna. The transistor has an oxide semiconductor layer in which hydrogen concentration is 5×1019/cm3 or less. An off-state current of the transistor is 1×10−13 A or less. On/off of the transistor is controlled in accordance with a signal inputted to a gate of the transistor. The load is a resistor, a capacitor, or a combination of a resistor and a capacitor.