Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force is obtained. An opening is provided in a central portion of the secondary battery, and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent.
Abstract:
The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
Abstract:
A novel multilayer film, a multilayer film suitable for an exterior material for a secondary battery, or a multilayer film that can be favorably used for a secondary battery suitable for a portable information terminal is provided. At least a metal layer and a resin layer are stacked as the multilayer film. A resin that constitutes the resin layer preferably has a durometer hardness of A90 or less, preferably A60 or less. Further, it is preferable that the resin be a material that does not break even when it is stretched to 150% of its original length, more preferably to 200% of its original length, in one direction. The thickness of the resin layer is preferably greater than or equal to 100 μm and less than or equal to 5 mm, more preferably greater than or equal to 500 μm and less than or equal to 3 mm.
Abstract:
A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force in obtained. An opening is provided in a central portion of the secondary battery, and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent.
Abstract:
To provide a semiconductor device in which a layer to be peeled is attached to a base having a curved surface, and a method of manufacturing the same, and more particularly, a display having a curved surface, and more specifically a light-emitting device having a light emitting element attached to a base with a curved surface. A layer to be peeled, which contains a light emitting element furnished to a substrate using a laminate of a first material layer which is a metallic layer or nitride layer, and a second material layer which is an oxide layer, is transferred onto a film, and then the film and the layer to be peeled are curved, to thereby produce a display having a curved surface.
Abstract:
To provide a method of manufacturing an optical film formed on a plastic substrate. There is provided a method of manufacturing an optical film including the steps of laminating a separation layer and an optical filter on a first substrate, separating the optical filter from the first substrate, attaching the optical filter to a second substrate.Since the optical film manufactured according to the invention has flexibility, it can be provided on a portion or a display device having a curved surface. Further, the optical film is not processed at high temperatures, and hence, an optical film having high yield with high reliability can be formed. Furthermore, an optical film having an excellent impact resistance property can be formed.
Abstract:
There is provided a high quality liquid crystal panel having a thickness with high accuracy, which is designed, without using a particulate spacer, within a free range in accordance with characteristics of a used liquid crystal and a driving method, and is also provided a method of fabricating the same. The shape of a spacer for keeping a substrate interval constant is made such that it is a columnar shape, a radius R of curvature is 2 μm or less, a height H is 0.5 μm to 10 μm, a diameter is 20 μm or less, and an angle α is 65° to 115°. By doing so, it is possible to prevent the lowering of an opening rate and the lowering of light leakage due to orientation disturbance.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force is obtained. An opening is provided in a central portion of the secondary battery; and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent.
Abstract:
A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.