摘要:
An optical data system and method are disclosed. The system can be an integrated optical data transmission system that includes an array of lasers that are modulated by a plurality of modulation signals to provide a plurality of sets of optical data signals. Each of the optical data signals in each of the plurality of sets can have a distinct wavelength. The system can also include a wavelength division multiplexing system to combine each of the plurality of sets of optical data signals to generate a plurality of multi-channel optical data signals that are transmitted via a respective plurality of optical transmission media.
摘要:
An optoelectronic interface includes an optically transparent substrate; and an alignment layer comprising a pattern of alignment features disposed on said optically transparent substrate.
摘要:
This disclosure is directed to scalable optical interconnect fabrics for distributing optical signals over a computer systems. In one aspect, an optical interconnect fabric includes a star coupler and a plurality of output optical fibers. Each output optical fiber is connected at a first end to the star coupler and is connected at a second end to a node of a plurality of nodes. The fabric also includes the input optical fiber connected at a first end to the star coupler and connected at a second end to a node of the plurality of nodes. The star coupler is to receive at least one optical signal via the input optical fiber, is to split each optical signal into a plurality of optical signals with approximately the same optical power, and is to output each optical signal into one of the output optical fibers.
摘要:
A small-mode-volume, vertical-cavity, surface-emitting laser (VCSEL). The VCSEL includes an active structure to emit light upon injection of carriers, and two reflecting structures at least one of which is a grating reflector structure. The active structure is disposed within at least one of the reflecting structures. The reflecting structures are configured as a vertical-cavity resonator of small mode-volume. An optical-bus transmitter including a plurality of small-mode-volume VCSELs, and a system including at least one optical bus and at least one optical-bus transmitter in a digital-information processor, or a data-processing center, are also provided.
摘要:
An optical channel tap assembly comprises a first N by M waveguide array including a first set of optical channels to convey optical signals along a first set of conveyance paths. The optical channel tap assembly also comprises a second N by M waveguide array including a second set of optical channels to convey the optical signals along a second set of conveyance paths, the optical signals received from the first set of conveyance paths. Additionally, the optical channel tap assembly comprises a beam splitter, disposed between the first N by M waveguide array and the second N by M waveguide array, to divert a first portion of power from the optical signals away from the second N by M waveguide array while allowing a second portion of power from the optical signals to propagate into the second N by M waveguide array.
摘要:
An optical device (15; 25; 315; 325; 345; 400; 500; 600; 700; 800) may include a light transmissive medium (450; 550; 650; 750; 850) having two sides. On one side may be a high reflectivity mirror (430; 530; 630; 830) and on the other side may be a plurality of partial reflectivity mirrors (460-466; 560-566; 662-666; 860-870) that may be guided mode resonance or nanodot mirrors. An optical system (25; 315; 325; 345; 500; 600; 700; 800) may have a plurality of light inputs (FIG. 2A; FIG. 5A), a light transmissive medium (550; 650; 750; 850), and a plurality of light outputs (FIGS. 2A-2B; FIG. 5B) from the light transmissive medium (550; 650; 750; 850). The light transmissive medium (550; 650; 750; 850) may have a high reflectivity mirror (530; 630; 830) on one side and a plurality of partial reflectivity mirrors (560-566; 662-666; 860-870) on a second side.
摘要:
Wavelength division multiplexing (“WDM”) passive optical networks (“PON”) to transport signals having various access platforms are described. For one embodiment, a WDM PON performs bi-directional communications, and includes an interface. The interface transfers one or more signals having a first platform to a WDM-PON data transmission platform at an access point of a network to propagate through a single transmission medium, to one or more remote distribution nodes in between a Central Office and an optical network unit. The single transmission medium carries three or more optical channels traveling in both directions.
摘要:
This invention relates to a method of making optical fiber having low polarization dependence. Light propagating through a cladding thereof has a mode group having a first eigenmode propagating at a first speed and a second eigenmode propagating at a second speed. Manufacture of the fiber is controlled so that a difference between the first and second speeds is small. A difference between the speeds divided by the first speed is preferably less than 5×10−7.
摘要:
A dynamic gain flattening filter includes a first filter stage. The first filter stage has a first tunable coupling member and a first differential delay with first and second tunable delay paths. The first tunable coupling member adjusts an amount of power of the optical signal that is divided onto the first and second tunable delay paths of the first differential delay.
摘要:
An optical interface device for use in coherent testing of a device for its response to a stimulus signal. The interface includes a reference signal generator for generating a reference signal and a stimulus signal from the light signal input to the interface. A first optical switch routes the stimulus signal to one of the device test ports. A second optical switch routes a light signal from the device under test to the test signal output port. A plurality of optical routers are utilized for connecting the device test ports to the first and second switches. The output of the optical routers also provides a signal related to the intensity of the light signal leaving the device test port for use in correcting the data for variations in intensity in the stimulus light signal. A polarization synthesizer for setting the polarization state of the stimulus signal may also be included.