Abstract:
A device configured to have a nanowire formed laterally between two electrodes includes a substrate and an insulator layer established on at least a portion of the substrate. An electrode of a first conductivity type and an electrode of a second conductivity type different than the first conductivity type are established at least on the insulator layer. The electrodes are electrically isolated from each other. The electrode of the first conductivity type has a vertical sidewall that faces a vertical sidewall of the electrode of the second conductivity type, whereby a gap is located between the two vertical sidewalls. Methods are also disclosed for forming the device.
Abstract:
A metal is deposited onto a surface electrochemically using a deposition solution including a metal salt. In making a composite nanostructure, the solution further includes an enhancer that promotes electrochemical deposition of the metal on the nanostructure. In a method of forming catalyzing nanoparticles, the metal preferentially deposits on a selected location of a surface that is exposed through a mask layer instead of on unexposed surfaces. A composite nanostructure apparatus includes an array of nanowires and the metal deposited on at least some nanowire surfaces. Some of the nanowires are heterogeneous, branched and include different adjacent axial segments with controlled axial lengths. In some deposition solutions, the enhancer one or both of controls oxide formation on the surface and causes metal nanocrystal formation. The deposition solution further includes a solvent that carries the metal salt and the enhancer.
Abstract:
Methods of forming NERS-active structures are disclosed that include ordered arrays of nanoparticles. Nanoparticles covered with an outer shell may be arranged in an ordered array on a substrate using Langmuir-Blodgett techniques. A portion of the outer shell may be removed, and the exposed nanoparticles may be used in a system to perform nanoenhanced Raman spectroscopy. An ordered array of nanoparticles may be used as a mask for forming islands of NERS-active material on a substrate. NERS-active structures and an NERS system that includes an NERS-active structure are also disclosed. Also disclosed are methods for performing NERS with NERS-active structures.
Abstract:
This invention presents a process to produce bulk quantities of nanowires of a variety of semiconductor materials. Large liquid gallium drops are used as sinks for the gas phase solute, generated in-situ facilitated by microwave plasma. To grow silicon nanowires for example, a silicon substrate covered with gallium droplets is exposed to a microwave plasma containing atomic hydrogen. A range of process parameters such as microwave power, pressure, inlet gas phase composition, were used to synthesize silicon nanowires as small as 4 nm (nanometers) in diameter and several micrometers long. As opposed to the present technology, the instant technique does not require creation of quantum sized liquid metal droplets to synthesize nanowires. In addition, it offers advantages such as lower growth temperature, better control over size and size distribution, better control over the composition and purity of the nanowires.
Abstract:
Nanowire growth in situ on a planar surface, which is one of a crystalline surface having any crystal orientation, a polycrystalline surface and a non-crystalline surface, is controlled by guiding catalyzed growth of the nanowire from the planar surface in a nano-throughhole of a patterned layer formed on the planar surface, such that the nanowire grows in situ perpendicular to the planar surface. An electronic device includes first and second regions of electronic circuitry vertically spaced by the patterned layer. The nano-throughhole of the patterned layer extends perpendicularly between the regions. The first region has the planar surface. The device further includes a nanowire extending perpendicular from a catalyst location on the planar surface of the first region in the nano-throughhole. The nanowire forms a component of a nano-scale circuit that connects the regions.
Abstract:
Methods of forming NERS-active structures are disclosed that include ordered arrays of nanoparticles. Nanoparticles covered with an outer shell may be arranged in an ordered array on a substrate using Langmuir-Blodgett techniques. A portion of the outer shell may be removed, and the exposed nanoparticles may be used in a system to perform nanoenhanced Raman spectroscopy. An ordered array of nanoparticles may be used as a mask for forming islands of NERS-active material on a substrate. NERS-active structures and an NERS system that includes an NERS-active structure are also disclosed. Also disclosed are methods for performing NERS with NERS-active structures.
Abstract:
A nano-colonnade structure-and methods of fabrication and interconnection thereof utilize a nanowire column grown nearly vertically from a (111) horizontal surface of a semiconductor layer to another horizontal surface of another layer to connect the layers. The nano-colonnade structure includes a first layer having the (111) horizontal surface; a second layer having the other horizontal surface; an insulator support between the first layer and the second layer that separates the first layer from the second layer. A portion of the second layer overhangs the insulator support, such that the horizontal surface of the overhanging portion is spaced from and faces the (111) horizontal surface of the first layer. The structure further includes a nanowire column extending nearly vertically from the (111) horizontal surface to the facing horizontal surface, such that the nanowire column connects the first layer to the second layer.
Abstract:
Methods of making nanometer-scale semiconductor structures with controlled size are disclosed. Semiconductor structures that include one or more nanowires are also disclosed. The nanowires can include a passivation layer or have a hollow tube structure.
Abstract:
A process is provided to produce bulk quantities of nanowires in a variety of semiconductor materials. Thin films and droplets of low-melting metals such as gallium, indium, bismuth, and aluminum are used to dissolve and to produce nanowires. The dissolution of solutes can be achieved by using a solid source of solute and low-melting metal, or using a vapor phase source of solute and low-melting metal. The resulting nanowires range in size from 1 nanometer up to 1 micron in diameter and lengths ranging from 1 nanometer to several hundred nanometers or microns. This process does not require the use of metals such as gold and iron in the form of clusters whose size determines the resulting nanowire size. In addition, the process allows for a lower growth temperature, better control over size and size distribution, and better control over the composition and purity of the nanowire produced therefrom.
Abstract:
A NERS-active structure is disclosed that includes at least one heterostructure nanowire. The at least one heterostructure nanowire may include alternating segments of an NERS-inactive material and a NERS-active material in an axial direction. Alternatively, the alternating segments may be of an NERS-inactive material and a material capable of attracting nanoparticles of a NERS-active material. In yet another alternative, the heterostructure nanowire may include a core with alternating coatings of an NERS-inactive material and a NERS-active material in a radial direction. A NERS system is also disclosed that includes a NERS-active structure. Also disclosed are methods for forming a NERS-active structure and methods for performing NERS with NERS-active structures.