摘要:
The present invention provides a method and apparatus for manufacturing halogen gas using a plasma chemical reaction, with the features of having simplicity, practicality, and maintaining safety in handling source materials and of being able to manufacture halogen gas in the same facility where halogen gas is used, and also provides a halogen gas circulatory and recovery system capable of circulating and using halogen gas efficiently. After the gas expressed in the chemical formula AiXj (A represents metallic element or semiconductor element, X represents halogen element, and i and j represent integers) is introduced into a reaction container in vacuum, plasmas are generated in the reaction container to produce a plasma chemical reaction. Fine particles produced by the plasma chemical reaction and containing an element other than halogen element as the major constituent are removed from the reaction container so as to generate halogen gas in the reaction container.
摘要:
A forming method and a forming apparatus of nanocrystalline silicon structure makes it possible to prepare a nanocrystalline silicon structure at a low temperature to have densely packed silicon crystal grains which are stably terminated and to effectively control the grain size in nanometer scale. A forming method and a forming apparatus of nanocrystalline silicon structure with oxide or nitride termination, carry out a first step of treating a surface of a substrate with hydrogen radical; a second step of depositing silicon crystals having a grain size of 10 nm or less by the thermal reaction of a silicon-containing gas; and a third step of terminating the surface of the silicon crystal with oxygen or nitrogen by using one of oxygen gas, oxygen radical and nitrogen radical.
摘要:
A photoelectric conversion device with low resistance loss and high conversion efficiency is provided. The photoelectric conversion device includes a first silicon semiconductor layer and a second silicon semiconductor layer between a pair of electrodes. The first silicon semiconductor layer is provided over one surface of a crystalline silicon substrate having one conductivity type and has a conductivity type opposite to that of the crystalline silicon substrate, and the second silicon semiconductor layer is provided on the other surface of the crystalline silicon substrate and has a conductivity type which is the same as that of the crystalline silicon substrate. Further, the first silicon semiconductor layer and the second silicon semiconductor layer each have a carrier concentration varying in the film thickness direction.
摘要:
An oxygen- or nitrogen-terminated silicon nanocrystalline structure is formed on a silicon substrate by forming a silicon film of fine silicon crystals and amorphous silicon on a substrate, and oxidizing or nitriding the formed silicon film with ions and radicals formed from an oxidizing gas or a nitriding gas. The oxidizing or nitriding step comprises substeps of disposing the substrate provided with the silicon film in an oxidizing or nitriding gas atmosphere within a plasma treatment chamber, and then plasma-oxiziding or plasma-nitriding the substrate provided with the silicon film by applying a high frequency electric field to the oxidizing or nitriding gas atmosphere. The method allows the particle diameter of the oxygen- or nitrogen-terminated silicon nanocrystals to be regulated to an accuracy of 1 to 2 nm, the density thereof per unit area to be increased, and the silicon nanocrystalline structure to be produced easily and inexpensively.
摘要:
A plasma treatment apparatus has a reaction vessel (11) provided with a top electrode (13) and a bottom electrode (14), and the first electrode is supplied with a VHF band high frequency power from a VHF band high frequency power source (32), while the bottom electrode on which a substrate (12) is loaded and is moved by a vertical movement mechanism. The plasma treatment system has a controller (36) which, at the time of a cleaning process after forming a film on the substrate (12), controls a vertical movement mechanism to move the bottom electrode to narrow the gap between the top electrode and bottom electrode and form a narrow space and starts cleaning by a predetermined high density plasma in that narrow space. In the cleaning process, step cleaning is performed. Due to this, the efficiency of utilization of the cleaning gas is increased, the amount of exhaust gas is cut, and the cleaning speed is raised. Further, the amount of the process gas used is cut and the process cost is reduced.
摘要:
A substrate is set at a predetermined temperature in a plasma treatment chamber, then the inside of the plasma treatment chamber is regulated at a reduced pressure containing at least a silicon hydride gas and a hydrogen gas, a high-frequency electric field is applied to form a silicon film of nanometer scale thickness composed of fine silicon crystals and amorphous silicon on the substrate. Thereafter, application of the high-frequency electric field is terminated, then the inside of the plasma treatment chamber is replaced by an oxidizing or nitriding gas, and a high-frequency electric field is applied again for plasma oxidizing treatment or plasma nitriding treatment of the silicon film formed on the substrate. Thereby, a silicon nanocrystalline structure can be formed on a silicon substrate by using a process of producing silicon integrated circuits with achieving high luminous efficiency, and terminating reliably with oxygen or nitrogen on the surface thereof. According to the method of the present invention, the particle diameter of the oxygen- or nitrogen-terminated silicon nanocrystals can be regulated in an accuracy of 1 to 2 nm, the density thereof per unit area can be increased, and the silicon nanocrystalline structure can be produced easily and inexpensively.
摘要:
The present invention provides a method and apparatus for manufacturing halogen gas using a plasma chemical reaction, with the features of having simplicity, practicality, and maintaining safety in handling source materials and of being able to manufacture halogen gas in the same facility where halogen gas is used, and also provides a halogen gas circulatory and recovery system capable of circulating and using halogen gas efficiently. After the gas expressed in the chemical formula AiXj (A represents metallic element or semiconductor element, X represents halogen element, and i and j represent integers) is introduced into a reaction container in vacuum, plasmas are generated in the reaction container to produce a plasma chemical reaction. Fine particles produced by the plasma chemical reaction and containing an element other than halogen element as the major constituent are removed from the reaction container so as to generate halogen gas in the reaction container.
摘要:
A forming method and a forming apparatus of nanocrystalline silicon structure makes it possible to prepare a nanocrystalline silicon structure at a low temperature to have densely packed silicon crystal grains which are stably terminated and to effectively control the grain size in nanometer scale. A forming method and a forming apparatus of nanocrystalline silicon structure with oxide or nitride termination, carry out a first step of treating a surface of a substrate with hydrogen radical; a second step of depositing silicon crystals having a grain size of 10 nm or less by the thermal reaction of a silicon-containing gas; and a third step of terminating the surface of the silicon crystal with oxygen or nitrogen by using one of oxygen gas, oxygen radical and nitrogen radical.
摘要:
A sputtering device includes a sputter chamber equipped with a vacuum pump system; a metal target provided inside the sputter chamber; a sputtering power source for producing a sputter discharge and sputtering the target to create sputter particles; a substrate holder for holding a substrate in the position where the sputter particles land; and a gas introduction device for introducing into the sputter chamber a reactive gas that reacts with the sputter particles released from the target, and produces a compound that has a lower sticking characteristic to a special region of the substrate than do the sputter particles alone, wherein the compound can be dissociated in another region of the substrate. A method of sputtering includes the steps of producing a sputter discharge with a sputtering power source for sputtering a metal target in a sputter chamber to create sputter particles; holding a substrate in a position where the sputter particles land; introducing into the sputter chamber a reactive gas that reacts with the sputter particles released from the target to produce a compound that has a lower sticking characteristic to a special region of the substrate than do the sputter particles alone; and dissociating the compound in another region of the substrate.