摘要:
The present invention provides a technique by which heat can be efficiently recovered from a coolant used to cool a reactor, and contamination with dopant impurities from an inner wall of a reactor when polycrystalline silicon is deposited within the reactor can be reduced to produce high-purity polycrystalline silicon. With the use of hot water 15 having a temperature higher than a standard boiling point as a coolant fed to the reactor 10, the temperature of the reactor inner wall is kept at a temperature of not more than 370° C. Additionally, the pressure of the hot water 15 to be recovered is reduced by a pressure control section provided in a coolant tank 20 to generate steam. Thereby, a part of the hot water is taken out as steam to the outside, and reused as a heating source for another application.
摘要:
There is disclosed a silicon wafer etching method in which etching is performed through use of an etchant. The etchant is an alkali aqueous solution which contains an alkali component in a concentration ranging from 50.6% to 55.0% by weight. The alkali component is preferably sodium hydroxide. The silicon wafer etching method can reduce not only surface roughness but also dispersion thereof.
摘要:
An improvement is proposed in the cleaning treatment of semiconductor silicon wafers in which the conventional step of cleaning with an aqueous solution of an acid is replaced with a cleaning treatment with a temporarily acidic pure water which is produced electrolytically by the application of a DC voltage between an anode and a cathode bonded to the surfaces of a hydrogen-ion exchange membrane so that the acidic cleaning treatment can be performed under mild conditions so as to eliminate the troubles unavoidable in the conventional process. The apparatus used therefor comprises a rectangular vessel partitioned into a central anode compartment, in which the wafers are held in a vertical disposition within an upflow of pure water, and a pair of cathode compartments on both sides of the anode compartment by partitioning with a pair of hydrogen-ion exchange membranes, on both sides of which an anode plate and a cathode plate are bonded.
摘要:
One end side of a core wire holder 20 is formed into a shape of a truncated cone and has an inclined surface. In the end portion, an opening 22 is provided, and a hollow portion 21 is formed, a silicon core wire 5 being inserted into the hollow portion 21 and held therein. On the surface of the silicon core wire 5, polycrystalline silicon 6 is vapor deposited by the Siemens method to produce a polycrystalline silicon rod. On the inclined surface of the truncated cone portion in the vicinity of the opening 22, as a thermal insulating layer, annular slits 23a to 23c are formed from an outer circumferential surface in the vicinity of the opening toward the hollow portion 21. The annular slit acts as a thermal insulating portion, and suppresses escape of the heat to heat the one end side of the core wire holder 20.
摘要:
An inner wall 11 of a reactor 10 has a two-layer structure: an anticorrosive layer 11a comprising an alloy material having high anticorrosiveness is provided on the inner side of the reactor contacting a corrosive process gas, and a heat conductive layer 11b for efficiently conducting the heat within the reactor 10 from an inner wall surface to a coolant flow passage 13 is provided on the outer side of the reactor (outer-wall side). The anticorrosive layer 11a comprises an alloy material having a composition for which a value R, defined by R=[Cr]+[Ni]−1.5 [Si], is not less than 40% wherein [Cr] is a mass content (% by mass) of chromium (Cr), [Ni] is a mass content (% by mass) of nickel (Ni), and [Si] is a mass content (% by mass) of silicon (Si).
摘要:
The present invention provides a method for manufacturing a semiconductor wafer comprising steps of obtaining information of a device manufacturing process, selecting a wafer manufacturing process corresponding thereto, and manufacturing a semiconductor wafer according to the selected wafer manufacturing process. The present invention also provides a method for receiving an order for manufacture of a semiconductor wafer comprising a step of connecting a device maker with a customer computer in a wafer maker, a step wherein the customer computer receives information of a device manufacturing process and a step of selecting a wafer manufacturing process corresponding thereto, and provides a system for receiving an order for manufacture of a semiconductor wafer comprising a client terminal in a device maker and a customer computer in a wafer maker wherein information of a device manufacturing process is inputted into the client terminal and is sent, the customer computer receives the information of the device manufacturing process, and a wafer manufacturing process corresponding thereto is selected. Thereby, there can be provided a method for manufacturing a semiconductor wafer, a method for receiving an order for manufacture of a semiconductor wafer, and a system for receiving an order wherein a wafer suitable for a device manufacturing process in a device maker is supplied.
摘要:
An elastic foamed sheet is disclosed which is usable as waxless polishing backing pads for wafers and capable of producing mirror polish wafers excelling in flatness.This elastic foamed sheet possesses at least a foamed layer 2 and is characterized by the fact that a plurality of bubbles 4 in the foamed layer 2 meet the following conditions:(1) that the bubbles are slender discrete bubbles erected parallelly to one another and dispersed at a substantially equal pitch in the direction of width of the foamed layer 2 and the bubbles 4 are substantially equal in size, shape, and position of formation in the direction of thickness of the foamed layer 2,(2) that center lines of the bubbles 4 in the direction of length thereof are parallel to the direction of thickness of the foamed layer 2, and(3) that the diameters of the bubbles 4 are minimized in the terminal part of the foamed layer 2 on one surface side thereof and gradually increased in the direction from the one surface side to the other surface side of foamed layer 2 until the bubbles form openings 6 thereof in the surface of the foamed layer 2.
摘要:
Raw material gas supply nozzles are arranged within a virtual concentric circle having its center at the center of a disk-like base plate (having an area half as large as an area of the base plate). Raw material gas is ejected at a flow velocity of 150 m/sec or more into a bell jar from the gas supply nozzles. In addition to one gas supply nozzle provided in a center portion of the base plate, three gas supply nozzles can be arranged at the vertex positions of a regular triangle inscribed in a circumscribed circle having its center at the gas supply nozzle in the center portion. With the gas supply nozzles so arranged, a smooth circulating flow is formed within a reactor.
摘要:
A bell jar includes a metallic bell jar (1), and a metallic base plate (2) on which the bell jar (1) is placed, and packing (3) seals an inside of a container. To the base plate (2), a pressure gauge (4), a gas introduction line (5), and a gas discharge line (6) are connected so as to allow monitoring of internal pressure of the bell jar (1) and introduction and discharge of a gas. A vacuum pump (7) is provided in a path of the gas discharge line (6), and the vacuum pump (7) reduces internal pressure of the bell jar so as to be lower than vapor pressure of water. The vacuum pump (7) reduces the internal pressure of the bell jar so as to be lower than vapor pressure of water, thereby efficiently removing moisture, and completing drying of the bell jar in a short time.
摘要:
The upper electrode 31 has a hole 35 extending from an upper surface 33 to a lower surface 34, a bolt 36 is inserted from the upper surface 33 of the upper electrode 31 into the hole 35, and secured in a lower electrode 32 by a screw. A gap 51 between an inside of the hole 35 and a straight body portion of the bolt 36 allows the upper electrode 31 to slide in all directions in a placement surface (upper surface of the lower electrode 32 in contact with the lower surface 34 of the upper electrode 31 in FIG. 2) that is a contact surface with an upper surface of the lower electrode 32, thereby providing an effect of preventing occurrence of a crack or a break in a U rod that can be expanded and contracted in all directions during a vapor phase growth process.