Abstract:
In one embodiment, an apparatus includes: an amplifier to compare a reference voltage to a feedback voltage and to output a comparison signal based on the comparison; a loop circuit coupled to the amplifier, where the loop circuit is to receive the comparison signal and provide a regulated voltage to the amplifier as the feedback voltage in a first mode of operation, and in a second mode of operation to provide a predetermined feedback ratio point to the amplifier as the feedback voltage; and an output device coupled to the amplifier. The output device may be configured to receive a supply voltage and the comparison signal and output the regulated voltage at an output node based at least in part on the comparison signal.
Abstract:
A system, USB Type-C connector and method are provided herein to transmit encoded data across a USB cable from a transmitter circuit included within a transmitting port of a USB Type-C connector. The method described herein may generally include detecting a voltage generated at a configuration channel (CC) pin of a transmitting port of a USB Type-C connector, setting a voltage at an output node of the transmitter circuit equal to the voltage detected at the CC pin before the output node of the transmitter circuit is connected to the CC pin, subsequently connecting the output node of the transmitter circuit to the CC pin, and transmitting the encoded data from the transmitter circuit through the CC pin to the USB cable.
Abstract:
In one aspect, an apparatus includes: a first time-to-data converter (TDC) to oversample a first duration of incoming data and hold the oversampled first duration during receipt of a second duration of the incoming data; a second TDC to oversample the second duration of the incoming data and hold the oversampled second duration during receipt of a third duration of the incoming data; a processing circuit coupled to the first and second TDCs, the processing circuit including a first filter to filter the oversampled first duration and the oversampled second duration and generate a control output therefrom; and a digitally controlled oscillator (DCO) coupled to the processing circuit to receive the control output and generate a recovery clock signal therefrom.
Abstract:
In one aspect, a method includes: determining a power mode of a device; setting a first reference voltage level and a second reference voltage level based at least in part on the power mode; and using at least one of the first reference voltage level and the second reference voltage level for comparison against incoming data.
Abstract:
Apparatus and associated methods are disclosed for gain programming or selection with parasitic element compensation. In one exemplary embodiment, an apparatus includes a first circuit that has a first programmable gain, and includes a first set of components having parasitic elements. The apparatus also includes a second circuit that has a second programmable gain, and includes a second set of components having parasitic elements. The apparatus has a gain that is a product of the first and second programmable gains. A gain error because of the parasitic elements of the first and second sets of components is canceled by setting the first programmable gain as a reciprocal of the second programmable gain.
Abstract:
In an embodiment, an apparatus includes: an amplifier to compare a reference voltage to a feedback voltage and to output a comparison signal based on the comparison; a first loop circuit coupled to the amplifier to receive the comparison signal and output a first feedback voltage for the amplifier to use as the feedback voltage in a first mode of operation; and a second loop circuit coupled to the amplifier. The second loop circuit may be configured to receive the comparison signal and output a second feedback voltage for the amplifier to use as the feedback voltage in a second mode of operation. The second feedback voltage may be greater than the first feedback voltage, and the second loop circuit may output a regulated voltage based on the comparison signal.
Abstract:
In one embodiment, an apparatus includes: an amplifier to compare a reference voltage to a feedback voltage and to output a comparison signal based on the comparison; a loop circuit coupled to the amplifier, where the loop circuit is to receive the comparison signal and provide a regulated voltage to the amplifier as the feedback voltage in a first mode of operation, and in a second mode of operation to provide a predetermined feedback ratio point to the amplifier as the feedback voltage; and an output device coupled to the amplifier. The output device may be configured to receive a supply voltage and the comparison signal and output the regulated voltage at an output node based at least in part on the comparison signal.
Abstract:
In one aspect, an apparatus includes: a first time-to-data converter (TDC) to oversample a first duration of incoming data and hold the oversampled first duration during receipt of a second duration of the incoming data; a second TDC to oversample the second duration of the incoming data and hold the oversampled second duration during receipt of a third duration of the incoming data; a processing circuit coupled to the first and second TDCs, the processing circuit including a first filter to filter the oversampled first duration and the oversampled second duration and generate a control output therefrom; and a digitally controlled oscillator (DCO) coupled to the processing circuit to receive the control output and generate a recovery clock signal therefrom.
Abstract:
In one aspect, a method includes: determining a power mode of a device; setting a first reference voltage level and a second reference voltage level based at least in part on the power mode; and using at least one of the first reference voltage level and the second reference voltage level for comparison against incoming data.
Abstract:
In one aspect, a method includes: determining a power mode of a device; setting a first reference voltage level and a second reference voltage level based at least in part on the power mode; and using at least one of the first reference voltage level and the second reference voltage level for comparison against incoming data.