Abstract:
A semiconductor device is provided, including: a substrate having opposing first and second surfaces and a plurality of conductive vias passing through the first and second surfaces; an insulating layer formed on the first surface of the substrate and exposing end portions of the conductive vias therefrom; and a buffer layer formed on the insulating layer at peripheries of the end portions of the conductive vias, thereby increasing product reliability and good yield.
Abstract:
A semiconductor package is provided, which includes: a carrier; a frame having a plurality of openings, wherein the frame is bonded to the carrier and made of a material different from that of the carrier; a plurality of electronic elements disposed in the openings of the frame, respectively; an encapsulant formed in the openings of the frame for encapsulating the electronic elements; and a circuit layer formed on and electrically connected to the electronic elements. By accurately controlling the size of the openings of the frame, the present invention increases the accuracy of positioning of the electronic elements so as to improve the product yield in subsequent processes.
Abstract:
A semiconductor package is provided, including a semiconductor substrate having a plurality of conductive vias, a buffer layer formed on the semiconductor substrate, a plurality of conductive pads formed on end surfaces of the conductive vias and covering the buffer layer. During a reflow process, the buffer layer greatly reduces the thermal stress, thereby eliminating the occurance of cracking at the interface of conductive pads. A method of fabricating such a semiconductor package is also provided.
Abstract:
A method for fabricating a semiconductor package is disclosed, which includes the steps of: providing a carrier having a release layer and an adhesive layer sequentially formed thereon; disposing a plurality of semiconductor chips on the adhesive layer; forming an encapsulant on the adhesive layer for encapsulating the semiconductor chips; disposing a substrate on the encapsulant; exposing the release layer to light through the carrier so as to remove the release layer and the carrier; and then removing the adhesive layer, thereby effectively preventing the semiconductor chips from being exposed to light so as to avoid any photo damage to the semiconductor chips.
Abstract:
An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
Abstract:
A package structure is provided, which includes: a frame having a cavity penetrating therethrough; a semiconductor chip received in the cavity of the frame, wherein the semiconductor chip has opposite active and inactive surfaces exposed from the cavity of the frame; a dielectric layer formed in the cavity to contact and fix in position the semiconductor chip, wherein a surface of the dielectric layer is flush with a first surface of the frame toward which the active surface of the semiconductor chip faces; and a circuit structure formed on the surface of the dielectric layer flush with the first surface of the frame and electrically connected to the active surface of the semiconductor chip, thereby saving the fabrication cost and reducing the thickness of the package structure.
Abstract:
A package structure is provided, which includes: a frame having a cavity penetrating therethrough; a semiconductor chip received in the cavity of the frame, wherein the semiconductor chip has opposite active and inactive surfaces exposed from the cavity of the frame; a dielectric layer formed in the cavity to contact and fix in position the semiconductor chip, wherein a surface of the dielectric layer is flush with a first surface of the frame toward which the active surface of the semiconductor chip faces; and a circuit structure formed on the surface of the dielectric layer flush with the first surface of the frame and electrically connected to the active surface of the semiconductor chip, thereby saving the fabrication cost and reducing the thickness of the package structure.
Abstract:
An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
Abstract:
A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
Abstract:
A wafer level package having a pressure sensor and a fabrication method thereof are provided. A wafer having the pressure sensor is bonded to a lid, and electrical connecting pads are formed on the wafer. After the lid is cut, wire-bonding and packaging processes are performed. Ends of bonding wires are exposed and serve as an electrical connecting path. A bottom opening is formed on a bottom surface of the wafer, in order to form a pressure sensor path.