Abstract:
A method for fabricating an electronic package is provided. A plurality of packaging structures are provided, each of which having a carrier and at least one electronic component disposed on the carrier. The plurality of packaging structures are disposed on a supporting plate. An encapsulation layer is formed on the supporting plate and encapsulates the plurality of packaging structures. Even if there are various types of electronic packages of different specifications in the market, the molds that the encapsulation layer uses can still be developed for a supporting plate of a certain specification. Therefore, the fabrication cost of the electronic package is reduced.
Abstract:
A semiconductor package includes: a dielectric layer having opposite first and second surfaces; a semiconductor chip embedded in the dielectric layer and having a plurality of electrode pads; a plurality of first metal posts disposed on the electrode pads of the semiconductor chip, respectively, such that top ends of the first metal posts are exposed from the first surface; at least a second metal post penetrating the dielectric layer such that two opposite ends of the second metal post are exposed from the first and second surfaces, respectively; a first circuit layer formed on the first surface for electrically connecting the first and second metal posts; and a second circuit layer formed on the second surface for electrically connecting the second metal post. The semiconductor package dispenses with conventional laser ablation and electroplating processes for forming conductive posts in a molding compound, thereby saving fabrication time and cost.
Abstract:
A semiconductor package includes: a dielectric layer having opposite first and second surfaces; a semiconductor chip embedded in the dielectric layer and having a plurality of electrode pads; a plurality of first metal posts disposed on the electrode pads of the semiconductor chip, respectively, such that top ends of the first metal posts are exposed from the first surface; at least a second metal post penetrating the dielectric layer such that two opposite ends of the second metal post are exposed from the first and second surfaces, respectively; a first circuit layer formed on the first surface for electrically connecting the first and second metal posts; and a second circuit layer formed on the second surface for electrically connecting the second metal post. The semiconductor package dispenses with conventional laser ablation and electroplating processes for forming conductive posts in a molding compound, thereby saving fabrication time and cost.
Abstract:
A package structure having at least an MEMS element is provided, including a chip having electrical connecting pads and the MEMS element; a lid disposed on the chip to cover the MEMS element and having a metal layer provided thereon; first sub-bonding wires electrically connecting to the electrical connecting pads; second sub-bonding wires electrically connecting to the metal layer; an encapsulant disposed on the chip, wherein the top ends of the first and second sub-bonding wires are exposed from the encapsulant; and metallic traces disposed on the encapsulant and electrically connecting to the first sub-bonding wires. The package structure advantageously features reduced size, relatively low costs, diverse bump locations, and an enhanced EMI shielding effect.
Abstract:
A package structure is provided, including: a substrate having a ground pad and an MEMS element; a lid disposed on the substrate for covering the MEMS element; a wire segment electrically connected to the ground pad; an encapsulant encapsulating the lid and the wire segment; and a circuit layer formed on the encapsulant and electrically connected to the wire segment and the lid so as to commonly ground the substrate and the lid, thereby releasing accumulated electric charges on the lid so as to improve the reliability of the MEMS system and reduce the number of I/O connections.
Abstract translation:提供一种封装结构,包括:具有接地焊盘和MEMS元件的衬底; 设置在所述基板上用于覆盖所述MEMS元件的盖; 电连接到接地垫的线段; 封装盖和线段的密封剂; 以及形成在密封剂上并电连接到线段和盖子上的电路层,以便共同接地衬底和盖子,从而释放盖上的积累的电荷,从而提高MEMS系统的可靠性并减少 I / O连接数。
Abstract:
A method for fabricating an electronic package is provided. A plurality of packaging structures are provided, each of which having a carrier and at least one electronic component disposed on the carrier. The plurality of packaging structures are disposed on a supporting plate. An encapsulation layer is formed on the supporting plate and encapsulates the plurality of packaging structures. Even if there are various types of electronic packages of different specifications in the market, the molds that the encapsulation layer uses can still be developed for a supporting plate of a certain specification. Therefore, the fabrication cost of the electronic package is reduced.
Abstract:
A wafer level package having a pressure sensor and a fabrication method thereof are provided. A wafer having the pressure sensor is bonded to a lid, and electrical connecting pads are formed on the wafer. After the lid is cut, wire-bonding and packaging processes are performed. Ends of bonding wires are exposed and serve as an electrical connecting path. A bottom opening is formed on a bottom surface of the wafer, in order to form a pressure sensor path.
Abstract:
A package structure includes a micro-electromechanical element having a plurality of electrical contacts; a package layer enclosing the micro-electromechanical element and the electrical contacts, with a bottom surface of the micro-electromechanical element exposed from a lower surface of the package layer; a plurality of bonding wires embedded in the package layer, each of the bonding wires having one end connected to one of the electrical contacts, and the other end exposed from the lower surface of the package layer; and a build-up layer structure provided on the lower surface of the package layer, the build-up layer including at least one dielectric layer and a plurality of conductive blind vias formed in the dielectric layer and electrically connected to one ends of the bonding wires. The package structure is easier to accurately control the location of an external electrical contact, and the compatibility of the manufacturing procedures is high.
Abstract:
An electronic package is provided, including: a first carrying structure having a first circuit layer; a package module disposed on the first carrying structure and electrically connected to the first circuit layer; a first electronic component disposed on the first carrying structure and electrically connected to the first circuit layer; and a second electronic component stacked on and electrically connected to the first electronic component. As the second electronic component is stacked with the first electronic component, a surface area of the first carrying structure that the first and second electronic components occupy is reduced, and the electronic package can have sufficient space to accommodate the package modules. A method for fabricating an electronic package is also provided.
Abstract:
An electronic package is provided, including: a first carrying structure having a first circuit layer; a package module disposed on the first carrying structure and electrically connected to the first circuit layer; a first electronic component disposed on the first carrying structure and electrically connected to the first circuit layer; and a second electronic component stacked on and electrically connected to the first electronic component. As the second electronic component is stacked with the first electronic component, a surface area of the first carrying structure that the first and second electronic components occupy is reduced, and the electronic package can have sufficient space to accommodate the package modules. A method for fabricating an electronic package is also provided.