Abstract:
Disclosed is a noise current compensation circuit. The circuit is provided with two input and output terminals A and B, and two control terminals CON and CONF. The control terminals control a work mode (work state and pre-charge state) of the compensation circuit. The compensation circuit consists of 7 PMOS transistors and 8 NMOS transistors. In the normal work state, by detecting changes of potential change rate of two signal lines in an original circuit, the noise current compensation circuit automatically enables one end of the original circuit that discharges slowly to discharge a signal more slowly, and enables one end of the original circuit that discharges rapidly to discharge a signal more rapidly, thus eliminating the influence of the noise current on the circuit and providing assistance for correct identification of subsequent circuit signals. The current compensation circuit can be used for an SRAM bit line leakage current compensation circuit, because the existence of a large leakage current on the SRAM bit line leads to the decreasing of a voltage difference between two ends of the bit line, resulting in that a subsequent circuit cannot correctly identify a signal.
Abstract:
An ultra-low-power mode control circuit for a power converter includes four modules: a level shift circuit, a start circuit, a static clamp circuit, and a control circuit. When a chip is powered on and a core voltage has not been established, the control circuit firstly starts a power source built-in clock to support operation of the power converter. When the core voltage is established, the control circuit determines whether to switch to an external clock according to a level of a mode selection signal. After the core voltage is powered down, the control circuit automatically wakes up the built-in clock to work.
Abstract:
Disclosed are a pre-decoding analysis-based configuration information cache management system, comprising a streaming media processing module, a configuration information prefetch FIFO module, a configuration information storage unit, and a cache controller module. Also disclosed is a management method for the pre-decoding analysis-based configuration information cache management system. The present invention allows for increased dynamic reconfiguration efficiency of a large-scale coarse-grained reconfigurable system.
Abstract:
A method for predicting the fluctuation of circuit path delay on the basis of machine learning, comprising the following steps: S1: selecting suitable sample characteristics by means of analyzing the relationship between circuit characteristics and path delay; S2: generating a random path by means of enumerating values of randomized parameters, acquiring the maximum path delay by means of performing Monte Carlo simulation on the random path, selecting a reliable path by means of the 3σ standard, and using the sample characteristics and path delay of the reliable path as a sample set (D); S3: establishing a path delay prediction model, and adjusting parameters of the model; S4: verifying the precision and stability of the path delay prediction model; S5: obtaining the path delay. The method for predicting the fluctuation of circuit path delay on the basis of machine learning has the advantages of high precision and low running time, thereby having remarkable advantages in the accuracy and efficiency of timing analysis.
Abstract:
The present invention relates to the field of analog integrated circuits, and provides a multiply-accumulate calculation method and circuit suitable for a neural network, which realizes large-scale multiply-accumulate calculation of the neural network with low power consumption and high speed. The multiply-accumulate calculation circuit comprises a multiplication calculation circuit array and an accumulation calculation circuit. The multiplication calculation circuit array is composed of M groups of multiplication calculation circuits. Each group of multiplication calculation circuits is composed of one multiplication array unit and eight selection-shift units. The order of the multiplication array unit is quantized in real time by using on-chip training to provide a shared input for the selection-shift units, achieving increased operating rate and reduced power consumption. The accumulation calculation circuit is composed of a delay accumulation circuit, a TDC conversion circuit, and a shift-addition circuit in series. The delay accumulation circuit comprises eight controllable delay chains for dynamically controlling the number of iterations and accumulating data multiple times in a time domain, so as to meet the difference in calculation scale of different network layers, save hardware storage space, reduce calculation complexity, and reduce data scheduling.
Abstract:
A process corner detection circuit based on a self-timing ring oscillator comprises a reset circuit (1), the self-timing oscillation ring (2), and a counting module (3). The self-timing ring oscillator (2) consists of m two-input Muller C-elements and inverters, and a two-input AND gate, m being a positive integer greater than or equal to 3. The circuit can be used for detecting a process corner of a fabricated integrated circuit chip, and reflecting the process corner of the chip according to the number of oscillations of the self-timing ring oscillator (2). The number of oscillations of the self-timing ring oscillator (2) in different process corners is acquired by Hspice simulation before the chip tape-out, and the process corner of the chip after the chip tape-out can be determined according to the actually measured number of oscillations.
Abstract:
An online monitoring unit and a control circuit for ultra-wide voltage range applications are disclosed. Compared with a conventional online monitoring unit, present invention eliminates a need to reserve delay units, replaces flip-flops in the conventional online monitoring unit with a latch, and uses a transition detector with fewer transistors than that of a shadow latch in the conventional online monitoring unit, thereby reducing an area and a power consumption of the online monitoring unit significantly and improving an energy efficiency of online monitoring techniques. In addition, in the ultra-wide voltage range applications, a time borrowing property of the latch adopted by the present invention can be utilized to prevent a timing error caused by process-voltage-temperature (PVT) variations, thus enabling a minimization of a timing margin and ensuring a higher power efficiency. The present invention also discloses a control circuit for use with the online monitoring unit.
Abstract:
Disclosed is a cache structure for use in implementing reconfigurable system configuration information storage, comprising: layered configuration information cache units: for use in caching configuration information that may be used by a certain or several reconfigurable arrays within a period of time; an off-chip memory interface module: for use in establishing communication; a configuration anagement unit: for use in managing a reconfiguration process of the reconfigurable arrays, in mapping each subtask in an algorithm application to a certain reconfigurable array, thus the reconfigurable array will, on the basis of the mapped subtask, load the corresponding configuration information to complete a function reconfiguration for the reconfigurable array. This increases the utilization efficiency of configuration information caches. Also provided is a method for managing the reconfigurable system configuration information caches, employing a mixed priority cache update method, and changing a mode for managing the configuration information caches in a conventional reconfigurable system, thus increasing the dynamic reconfiguration efficiency in a complex reconfigurable system.
Abstract:
The present invention discloses a circuit for improving process robustness of sub-threshold SRAM memory cells, which serves as an auxiliary circuit for a sub-threshold SRAM memory cell. The output of the circuit is connected to the PMOS tube of the sub-threshold SRAM memory cell and the substrate of a PMOS tube in the circuit. The circuit comprises a detection circuit for threshold voltage of PMOS tube and a differential input and single-ended output amplifier. The circuit changes the substrate voltage of the PMOS tubes in the sub-threshold SRAM memory cell and the substrate voltage of the PMOS tube in the circuit in a self-adapting manner by detecting threshold voltage fluctuations of PMOS tubes and NMOS tubes resulted from process fluctuations and thereby regulate the threshold voltages of the PMOS tubes, so that the threshold voltage of PMOS tubes matches the threshold voltage of NMOS tubes. The circuit improves the noise margin of sub-threshold SRAM memory cells and effectively improves the process robustness of sub-threshold SRAM memory cells.
Abstract:
The present invention discloses an ultralow-power negative margin timing monitoring method of a neural network circuit, relates to an adaptive voltage regulation technology based on on-chip timing detection, and belongs to the technical field of low-power design of integrated circuit. The present invention provides an ultralow-power operating method of neural network circuit. By inserting a timing monitoring unit in specific position of critical paths and setting partial circuits to operate under “negative margin”, the system can further lower voltage, compress the timing slack, and obtain higher power gain.