摘要:
A method for making an angular velocity sensor having two masses which are laterally disposed in an X-Y plane and indirectly connected to a frame is provided. The two masses are linked together by a linkage such that they necessarily move in opposite directions along Z. Angular velocity of the sensor about the Y axis can be sensed by driving the two masses into Z-directed antiphase oscillation and measuring the angular oscillation amplitude thereby imparted to the frame.
摘要:
A MEMS assembly having a MEMS subassembly sandwiched between and bonded to a cap and a base is provided. The MEMS subassembly includes at least one MEMS device element flexibly connected to the MEMS assembly. The vertical separation between the MEMS device element and an electrode on the base is lithographically defined. Precise control of this critical vertical gap dimension is thereby provided.
摘要:
A sensor for measuring acceleration in three mutually orthogonal axes, X, Y and Z is disclosed. The sensor comprises a sensor subassembly. The sensor subassembly further comprises a base which is substantially parallel to the X-Y sensing plane; a proof mass disposed in the X-Y sensing plane and constrained to move substantially in the X, Y, and Z, about by at least one linkage and is responsive to accelerations in the X, Y and Z directions. The sensor includes at least one paddle disposed in the sensing plane; and at least one pivot on the linkage. Finally, the sensor includes at least one electrode at the base plate and at least one transducer for each sensing direction of the sensor subassembly responsive to the acceleration.
摘要:
A system and method in accordance with the present invention provides for a low cost, bulk micromachined accelerometer integrated with electronics. The accelerometer can also be integrated with rate sensors that operate in a vacuum environment. The quality factor of the resonances is suppressed by adding dampers. Acceleration sensing in each axis is achieved by separate structures where the motion of the proof mass affects the value of sense capacitors differentially. Two structures are used per axis to enable full bridge measurements to further reduce the mechanical noise, immunity to power supply changes and cross axis coupling. To reduce the sensitivity to packaging and temperature changes, each mechanical structure is anchored to a single anchor pillar bonded to the top cover.
摘要:
An angular velocity sensor has two masses which are laterally disposed in an X-Y plane and indirectly connected to a frame. The two masses are linked together by a linkage such that they necessarily move in opposite directions along Z. Angular velocity of the sensor about the Y axis can be sensed by driving the two masses into Z-directed antiphase oscillation and measuring the angular oscillation amplitude thereby imparted to the frame.In a preferred embodiment, the angular velocity sensor is fabricated from a bulk MEMS gyroscope wafer, a cap wafer and a reference wafer. In a further preferred embodiment, this assembly of wafers provides a hermetic barrier between the masses and an ambient environment.
摘要:
Sensors for measuring angular acceleration about three mutually orthogonal axes, X, Y, Z or about the combination of these axes are disclosed. The sensor comprises a sensor subassembly. The sensor subassembly further comprises a base which is substantially parallel to the X-Y sensing plane; a proof mass disposed in the X-Y sensing plane and constrained to rotate substantially about the X, and/or Y, and/or Z, by at least one linkage and is responsive to angular accelerations about the X, and/or Y, and/or Z directions. Finally, the sensor includes at least one electrode at the base plate or perpendicular to the base plate and at least one transducer for each sensing direction of the sensor subassembly responsive to the angular acceleration. Multi-axis detection is enabled by adjusting a configuration of flexures and electrodes.
摘要:
A system and method in accordance with the present invention provides for a low cost, bulk micromachined accelerometer integrated with electronics. The accelerometer can also be integrated with rate sensors that operate in a vacuum environment. The quality factor of the resonances is suppressed by adding dampers. Acceleration sensing in each axis is achieved by separate structures where the motion of the proof mass affects the value of sense capacitors differentially. Two structures are used per axis to enable full bridge measurements to further reduce the mechanical noise, immunity to power supply changes and cross axis coupling. To reduce the sensitivity to packaging and temperature changes, each mechanical structure is anchored to a single anchor pillar bonded to the top cover.
摘要:
Sensors for measuring angular acceleration about three mutually orthogonal axes, X, Y, Z or about the combination of these axes are disclosed. The sensor comprises a sensor subassembly. The sensor subassembly further comprises a base which is substantially parallel to the X-Y sensing plane; a proof mass disposed in the X-Y sensing plane and constrained to rotate substantially about the X, and/or Y, and/or Z, by at least one linkage and is responsive to angular accelerations about the X, and/or Y, and/or Z directions. Finally, the sensor includes at least one electrode at the base plate or perpendicular to the base plate and at least one transducer for each sensing direction of the sensor subassembly responsive to the angular acceleration. Multi-axis detection is enabled by adjusting a configuration of flexures and electrodes.
摘要:
An integrated MEMS device comprises a wafer where the wafer contains two or more cavities of different depths. The MEMS device includes one movable structure within a first cavity of a first depth and a second movable structure within a second cavity of a second depth. The cavities are sealed to maintain different pressures for the different movable structures for optimal operation. MEMS stops can be formed in the same multiple cavity depth processing flow. The MEMS device can be integrated with a CMOS wafer.
摘要:
A MEMS device is disclosed. The MEMS device comprises a MEMS substrate and a CMOS substrate having a front surface, a back surface and one or more metallization layers. The front surface being bonded to the MEMS substrate. The MEMS device includes one or more conductive features on the back surface of the CMOS substrate and electrical connections between the one or more metallization layers and the one or more conductive features.