Abstract:
A phase shifter includes a first transistor and a second transistor. The first transistor includes a first gate terminal configured to receive a first voltage. The first transistor is configured to adjust at least a resistance or a first capacitance of the phase shifter responsive to the first voltage. The second transistor is coupled to the first transistor. The second transistor includes a second gate terminal configured to receive a second voltage. The second transistor is configured to adjust a second capacitance of the phase shifter responsive to the second voltage. The second gate terminal includes a first polysilicon portion and a second polysilicon portion extending in a first direction. The first polysilicon portion and the second polysilicon portion are positioned along opposite edges of an active region of the first transistor and the second transistor.
Abstract:
A differential oscillator includes a differential circuit and a transformer-coupled band-pass filter (BPF) coupled between first and second output nodes. The BPF includes a coupling device coupled between the output nodes and a transformer including first and second windings in a metal layer of an IC. The first winding includes first and second conductive structures coupled to the first output node and a voltage node, respectively, and a third conductive structure including first and second extending portions connected to the first and second conductive structures, respectively. The second winding includes a fourth conductive structure including a third extending portion coupled to the voltage node and a fourth extending portion coupled to the second output node. The third extending portion is between the second conductive structure and the first extending portion, and the fourth extending portion is between the first conductive structure and the second extending portion.
Abstract:
A method of detecting a power level of an RF signal includes driving an internal node of a power detection circuit to a DC node voltage level, generating, based on the DC node voltage level, a first component of an output voltage on an output node of the power detection circuit, receiving the RF signal on an input node of the power detection circuit, dividing the RF signal to generate a modulation signal on the internal node, and generating, by at least partially rectifying the modulation signal, a second component of the output voltage on the power detection circuit output node.
Abstract:
A transmitter circuit includes an amplifier configured to output a radio frequency (RF) signal on an output node, a power detection circuit coupled with the output node and configured to generate an output voltage having a first component based on a power level of the RF signal, and a reference voltage generator configured to generate a reference voltage. A comparator is configured to receive the output voltage and the reference voltage, an analog-to-digital converter (ADC) is coupled between the comparator and the amplifier, and the amplifier is configured to adjust the power level of the RF signal responsive to an output of the ADC.
Abstract:
A low noise amplifier (LNA) includes a first transistor and a second transistor. A source of the second transistor is connected to a drain of the first transistor. The LNA further includes a feedback transformer. A gate of the first transistor is connected to a primary winding of the feedback transformer and a gate of the second transistor is connected to a secondary winding of the feedback transformer.
Abstract:
A semiconductor device includes a substrate including a well region of a first conductive type; a first gate electrode on the substrate; a second gate electrode on the substrate; a first doped region embedded within the well region and is of the first conductive type, a second doped region embedded within the well region and is of the first conductive type, and a third doped region embedded within the well region and is of the first conductive type; and a first interconnection structure electrically connecting the first gate electrode and the second gate electrode. The first doped region and the second doped region are on opposite sides of the first gate electrode.
Abstract:
A cell layout design for an integrated circuit. In one embodiment, the integrated circuit includes a dual-gate cell forming two transistors connected with each other via a common source/drain terminal. The dual-gate cell includes an active region, two gate lines extending across the active region, at least one first gate via disposed on one or both of the two gate lines and overlapped with the active region, and second gate vias disposed on one or both of the two gate lines and located outside the active region.
Abstract:
An integrated circuit includes an inductor that includes a first set of conductive lines in a first metal layer, and is over a substrate, and a guard ring. The guard ring includes a first conductive line in a second metal layer, and extending in a first direction, a second conductive line extending in a second direction, and a first staggered line coupled between the first conductive line and the second conductive line. The first staggered line includes a second set of conductive lines in the second metal layer, and extends in the first direction, a third set of conductive lines in a third metal layer, and extends in the second direction, and a first set of vias coupling the second and third set of conductive lines together. All metal lines in the third metal layer that are part of the guard ring extend in the second direction.
Abstract:
A method of making a semiconductor device includes depositing an isolation region between adjacent fins of a plurality of fins over a substrate, wherein a top-most surface of the isolation region is a first distance from a bottom of the substrate. The method further includes doping each of the plurality of fins with a first dopant having a first dopant type to define a first doped region in each of the plurality of fins, wherein a bottom-most surface of the first doped region is a second distance from the bottom of the substrate, and the second distance is greater than the first distance. The method further includes doping each of the plurality of fins with a second dopant having a second dopant type to define a second doped region in each of the plurality of fins, wherein the second doped region contacts the isolation region.
Abstract:
A phase shifter includes an active region, a first and a second set of gates and a set of contacts. The active region extends in a first direction and is located at a first level. The first and second set of gates each extend in a second direction, overlap the active region and are located at a second level. The second set of gates are positioned along opposite edges of the active region, are configured to receive a first voltage, and are part of a first transistor. The first transistor is configured to adjust a first capacitance of the phase shifter responsive to the first voltage. The set of contacts extend in the second direction, are over the active region, are located at a third level, and are positioned between at least the second set of gates.