Abstract:
Individual first ones of a plurality of non-volatile logic element arrays are designated to restore first in response to entering a wakeup or restoration mode. These non-volatile logic element arrays include instructions for an order in which other non-volatile logic element arrays are to be restored next. So configured, the processing device can be set to have one or more NVL arrays restored first, which arrays are pre-configured to guide further wakeup of the device through directed restoration from particular NVL arrays. Certain NVL arrays can be skipped if the functions stored therein are not needed, and the order of restoration of others can be tailored to a particular wakeup time and power concern through restoration in parallel, serial, or combinations thereof.
Abstract:
A processing device is operated using a plurality of volatile storage elements. Data in the plurality of volatile storage elements is stored in a plurality of non-volatile logic element arrays. A primary logic circuit portion of individual ones of the plurality of volatile storage elements is powered by a first power domain, and a slave stage circuit portion of individual ones of the plurality of volatile storage elements is powered by a second power domain. During a write back of data from the plurality of non-volatile logic element arrays to the plurality of volatile storage elements, the first power domain is powered down and the second power domain is maintained. In a further approach, the plurality of non-volatile logic element arrays is powered by a third power domain, which is powered down during regular operation of the processing device.
Abstract:
A processing device is operated using a plurality of volatile storage elements. N groups of M volatile storage elements of the plurality of volatile storage elements per group are connected to an N by M size non-volatile logic element array of a plurality of non-volatile logic element arrays using a multiplexer. The multiplexer connects one of the N groups to the N by M size non-volatile logic element array to store data from the M volatile storage elements into a row of the N by M size non-volatile logic element array at one time or to write data to the M volatile storage elements from a row of the N by M size non-volatile logic element array at one time. A corresponding non-volatile logic controller controls the multiplexer operation with respect to the connections between volatile storage elements and non-volatile storage elements.
Abstract:
A processing device includes a plurality of non-volatile logic element array domains having two or more non-volatile logic element arrays to store 2006 a machine state of the processing device stored in a plurality of volatile store elements. Configuration bits are read to direct which non-volatile logic element array domains are enabled first and to direct an order in which the first enabled non-volatile logic element array domains are restored or backed up in response to entering a wakeup or backup mode. Configuration bits can be read to direct an order of and a parallelism of how individual non-volatile logic element arrays in a first enabled non-volatile logic element array domain are restored or backed up. The order of restoration or backing up can be controlled by instructions from non-volatile arrays of the first enabled of the plurality of non-volatile logic element array domains.
Abstract:
Disclosed examples include non-volatile counter systems to generate and store a counter value according to a sensor pulse signal, and power circuits to generate first and second supply voltage signals to power first and second power domain circuits using power from the sensor pulse signal, including a switch connected between first and second power domain supply nodes, a boost circuit, and a control circuit to selectively cause the switch to disconnect the first and second power domain circuits from one another after the first supply voltage signal rises above a threshold voltage in a given pulse of the sensor pulse signal, and to cause the boost circuit to boost the second supply voltage signal after the regulator output is disconnected from the second power domain supply node in the given pulse.
Abstract:
A processing device is operated using a plurality of volatile storage elements. N groups of M volatile storage elements of the plurality of volatile storage elements per group are connected to an N by M size non-volatile logic element array of a plurality of non-volatile logic element arrays using a multiplexer. The multiplexer connects one of the N groups to the N by M size non-volatile logic element array to store data from the M volatile storage elements into a row of the N by M size non-volatile logic element array at one time or to write data to the M volatile storage elements from a row of the N by M size non-volatile logic element array at one time. A corresponding non-volatile logic controller controls the multiplexer operation with respect to the connections between volatile storage elements and non-volatile storage elements.
Abstract:
A computing device apparatus facilitates use of a deep low power mode that includes powering off the device's CPU by including a hardware implemented process to trigger storage of data from the device's volatile storage elements in non-volatile memory in response to entering the low power mode. A hardware based power management unit controls the process including interrupting a normal processing order of the CPU and triggering the storage of the data in the non-volatile memory. In response to a wake-up event, the device is triggered to restore the data stored in the non-volatile memory to the volatile memory prior to execution of a wake up process for the CPU from the low power mode. The device includes a power storage element such as a capacitor that holds sufficient energy to complete the non-volatile data storage task prior to entering the low power mode.
Abstract:
A processing device is operated using a plurality of volatile storage elements. N groups of M volatile storage elements of the plurality of volatile storage elements per group are connected to an N by M size non-volatile logic element array of a plurality of non-volatile logic element arrays using a multiplexer. The multiplexer connects one of the N groups to the N by M size non-volatile logic element array to store data from the M volatile storage elements into a row of the N by M size non-volatile logic element array at one time or to write data to the M volatile storage elements from a row of the N by M size non-volatile logic element array at one time. A corresponding non-volatile logic controller controls the multiplexer operation with respect to the connections between volatile storage elements and non-volatile storage elements.
Abstract:
A processing device selectively backups only certain data based on a priority or binning structure. In one approach, a non-volatile logic controller stores the machine state by storing in non-volatile logic element arrays a portion of data representing the machine state less than all the data of the machine state. Accordingly, the non-volatile logic controller stores the machine state in the plurality of non-volatile logic element arrays by storing a first set of program data of the machine state according to a first category for backup and restoration and storing a second set of program data of the machine state according to a second category for backup and restoration.
Abstract:
Input power quality for a processing device is sensed. In response to detection of poor power quality, input power is disconnected, and the processing device backs up its machine state in non-volatile logic element arrays using available stored charge. When power is restored, the stored machine state is restored from the non-volatile logic element arrays to the volatile logic elements whereby the processing device resumes its process from the state immediately prior to power loss allowing seamless processing across intermittent power supply.