Abstract:
A system for additively manufacturing a composite part comprises a delivery guide and a surface, at least one of which is movable relative to another. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a photopolymer-resin component that is partially cured. The system further comprises a feed mechanism configured to push the continuous flexible line through the delivery guide. The system further comprises a source of a curing energy. The source is configured to deliver the curing energy at least to a portion of the segment of the continuous flexible line after the segment of the continuous flexible line exits the delivery guide.
Abstract:
A system for additively manufacturing a composite part is disclosed. The system comprises a housing and a nozzle. The nozzle is supported by the housing. The nozzle comprises an outlet, sized to dispense a continuous flexible line. The continuous flexible line comprises a non-resin component and a photopolymer-resin component. The system also comprises a feed mechanism, supported within the housing. The feed mechanism is configured to push the continuous flexible line out of the outlet of the nozzle. The system further comprises a light source, supported by the housing. The light source is configured to deliver a light beam to the continuous flexible line after the continuous flexible line exits the outlet of the nozzle to at least partially cure the photopolymer-resin component of the continuous flexible line.
Abstract:
A system (100) comprises a delivery guide (112) movable relative to a surface (114). The delivery guide (112) is configured to deposit a continuous flexible line (106) along a print path (122) that is stationary relative to the surface (114). The system (100) further comprises a vessel (236), configured to hold a volume of a liquid photopolymer resin (252) and to apply a quantity of the liquid photopolymer resin (252) to the non-resin component (108) to create the continuous flexible line (106). The system (100) further comprises a feed mechanism (104), configured to pull the non-resin component (108) through the vessel (236) and to push the continuous flexible line (106) out of the delivery guide (112). The system (100) further comprises a source (116) of curing energy (118). The source (116) is configured to deliver the curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) after the segment (120) of the continuous flexible line (106) exits the delivery guide (112).
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a photopolymer resin (252) to a non-resin component (108) while pushing a continuous flexible line (106) through a delivery assembly (266). The continuous flexible line (106) comprises the non-resin component (108) and a photopolymer-resin component (110) that comprises at least some of the photopolymer resin (252) applied to the non-resin component (108). The method (400) also comprises depositing, via the delivery assembly (266), a segment (120) of the continuous flexible line (106) along a print path (122). The method (400) further comprises delivering curing energy (118) to at least a portion (124) of the segment (120) of the continuous flexible line (106) deposited along the print path (122).
Abstract:
A method (300) of additively manufacturing composite part (102) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and further comprises a photopolymer-resin component (110) that is uncured. The method (300) further comprises delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) and after the segment (120) of the continuous flexible line (106) is deposited along the print path (120) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A system for separating support structure from a three-dimensional (3D)-printed component integrally printed with the support structure during an additive manufacturing (AM) process includes one or more transducers, indexing features configured to engage the transducer(s) and position the transducer(s) in contact with the support structure, and an electronic control unit (ECU). The ECU activates the transducer(s) which then vibrate at a predetermined resonant frequency of the support structure until the support structure fractures. A method includes engaging a transducer with an indexing feature, positioning the indexing feature with respect to the support structure such that the transducer is in contact with the support structure, and activating the transducer during a post-processing stage of the AM process, via the ECU, to cause the transducer to vibrate at the predetermined resonant frequency until the support structure fractures or breaks.
Abstract:
A system for separating support structure from a three-dimensional (3D)-printed component integrally printed with the support structure during an additive manufacturing (AM) process includes one or more transducers, indexing features configured to engage the transducer(s) and position the transducer(s) in contact with the support structure, and an electronic control unit (ECU). The ECU activates the transducer(s) which then vibrate at a predetermined resonant frequency of the support structure until the support structure fractures. A method includes engaging a transducer with an indexing feature, positioning the indexing feature with respect to the support structure such that the transducer is in contact with the support structure, and activating the transducer during a post-processing stage of the AM process, via the ECU, to cause the transducer to vibrate at the predetermined resonant frequency until the support structure fractures or breaks.
Abstract:
A method of additively manufacturing a composite part comprises applying a first quantity of a first part of a thermosetting resin to a first element of a non-resin component by pulling the first element through a first resin-part applicator and applying a second quantity of a second part of the thermosetting resin to a second element of the non-resin component by pulling the second element through a second resin-part applicator. The method also comprises combining the first element with the first quantity of first part and the second element with the second quantity of second part, to create a continuous flexible line. The method additionally comprises routing the continuous flexible line into a delivery guide and depositing, via the delivery guide, a segment of the continuous flexible line along a print path.
Abstract:
A method of additively manufacturing a composite part comprises applying a thermosetting resin to a non-resin component to create a continuous flexible line by pulling a non-resin component through a first resin-part applicator, in which a first quantity of a first part of the thermosetting resin is applied to the non-resin component, and by pulling a non-resin component through a second resin-part applicator, in which a second quantity of a second part of the thermosetting resin is applied to at least a portion of the first quantity of the first part of the thermosetting resin, applied to the non-resin component. The method further comprises routing the continuous flexible line into a delivery guide and depositing, via the delivery guide, a segment of the continuous flexible line along a print path.
Abstract:
A method of additively manufacturing a composite part comprises applying a photopolymer resin to a non-resin component while pushing a continuous flexible line through a delivery assembly. The continuous flexible line comprises the non-resin component and a photopolymer-resin component that comprises at least some of the photopolymer resin applied to the non-resin component. The method also comprises depositing, via the delivery assembly, a segment of the continuous flexible line along a print path. The method further comprises delivering curing energy to at least a portion of the segment of the continuous flexible line deposited along the print path.