Abstract:
A susceptor wire array. The array includes a first susceptor wire comprising an alloy having a first Curie temperature point and a second susceptor wire comprising an alloy having a second Curie temperature point, the second Curie temperature point is different than the first Curie temperature point of the first susceptor wire. In one susceptor wire arrangement, the second Curie temperature point of the second susceptor wire is lower than the first Curie temperature point of the first susceptor wire. In another susceptor wire arrangement, the array further comprises a third susceptor wire, the third susceptor wire comprising an alloy having a third Curie temperature point. The third Curie temperature point of the third susceptor wire may be different than the first Curie temperature point of the first susceptor wire.
Abstract:
A method and apparatus for performing induction welding. A number of protective layers are positioned between a susceptor layer and at least one of a plurality of workpieces at a weld location. An undesired current path is prevented from forming at the weld location during induction heating of the plurality of workpieces by the number of protective layers.
Abstract:
A method and apparatus for joining parts. A plurality of conformable induction coils embedded in a number of elastomeric sheets is positioned relative to a first composite part of the parts and a second composite part of the parts. A magnetic field is generated with the plurality of conformable induction coils. The magnetic field is configured to generate heat in a magnetically permeable material at a joint location. The heat joins the first composite part and the second composite part to each other.
Abstract:
An apparatus may include a curing apparatus and an electrical coupler. The curing apparatus may include one or more electrical components related to curing a composite material inside a vacuum chamber at least partially defined by a flexible wall. The electrical coupler may be connected to the curing apparatus. The coupler may include a first set of one or more electrical contacts electrically connected to the one or more electrical components of the curing apparatus inside the vacuum chamber. The coupler may be configured to hermetically extend through a hole in the flexible wall. Such extension may dispose the first set of one or more electrical contacts in a space outside of the vacuum chamber for electrical interconnection of the one or more electrical components of the curing apparatus inside the vacuum chamber with circuitry disposed in the space outside of the vacuum chamber.
Abstract:
A method and apparatus for performing induction welding. A number of protective layers are positioned between a susceptor layer and at least one of a plurality of workpieces at a weld location. An undesired current path is prevented from forming at the weld location during induction heating of the plurality of workpieces by the number of protective layers.
Abstract:
A structural health monitoring system for multiple layer structures includes a plurality of strain-sensitive magnetic particles dispersed within a bonding area between at least two individual layers, at least one multiferroic sensor dispersed on a surface of the multiple layer structure, proximate to an area of the structure to be monitored, the at least one multiferroic sensor capable of monitoring strains experienced by the strain-sensitive magnetic particles, and analyzing changes in the strains experienced by said strain-sensitive magnetic particles that may indicate damage or degradation in the structure, and a controller configured for periodic interrogation of the at least one multiferroic sensor.
Abstract:
Methods and an apparatus are provided for heating a material. The apparatus includes a roller that includes at least one susceptor contained therein, and at least one induction coil coupled to the roller. The induction coil is configured to induce a magnetic field in the susceptor to facilitate increasing a temperature of the roller.
Abstract:
A method of supplying electricity to an electrical component inside a vacuum chamber may include positioning an electrical component inside a vacuum chamber, the electrical component having a first electrical connector portion. A second electrical connector portion may then be connected to the first electrical portion through a hole in a flexible wall of the vacuum chamber, the second electrical connector portion being electrically connected to circuitry disposed outside the vacuum chamber. The connecting step may include hermetically clamping the flexible wall of the vacuum chamber between the first and second electrical connector portions.
Abstract:
An enclosure for heating a three dimensional structure. The enclosure comprising a body defining a cavity therein. The cavity sized to receive a three dimensional structure. A plurality of heating blankets configured to heat the three dimensional structure to a substantially uniform temperature. At least one of the plurality of heating blankets comprises a conductor for receiving current and generating a magnetic field in response thereto, a first susceptor wire comprising an alloy having a first Curie temperature point and a second susceptor wire. The second susceptor wire comprising a second Curie temperature point that is different than the first Curie temperature point of the first susceptor wire.
Abstract:
A method of supplying electricity to an electrical component inside a vacuum chamber may include positioning an electrical component inside a vacuum chamber, the electrical component having a first electrical connector portion. A second electrical connector portion may then be connected to the first electrical portion through a hole in a flexible wall of the vacuum chamber, the second electrical connector portion being electrically connected to circuitry disposed outside the vacuum chamber. The connecting step may include hermetically clamping the flexible wall of the vacuum chamber between the first and second electrical connector portions.