Abstract:
A die and method for impregnating at least one fiber roving with a polymer resin are disclosed. In one embodiment, the die includes an impregnation section including an impregnation zone configured to impregnate the roving with the resin, the impregnation zone including a plurality of contact surfaces. The die further includes a perturbation positioned on at least one of the plurality of contact surfaces, the perturbation configured to interact with the roving. In one embodiment, the method includes coating a fiber roving with a polymer resin. The method further includes traversing the coated roving through an impregnation zone to impregnate the roving with the resin. The impregnation zone includes a plurality of contact surfaces. The method further includes interacting the coated roving with a perturbation positioned on at least one of the plurality of contact surfaces.
Abstract:
An asymmetric tape and a system and method for impregnating at least one fiber roving with a polymer resin to form an asymmetric tape are provided. The asymmetric tape includes a polymer resin, and a plurality of fibers embedded in the polymer resin to form a fiber reinforced polymer material. The fiber reinforced polymer material includes a first surface and an opposing second surface. The fibers are disposed in the fiber reinforced polymer material to form a resin rich portion and a fiber rich portion. The resin rich portion includes the first surface and the fiber rich portion includes the second surface.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body formed from a polymer material, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding and unbonded from the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a continuous fiber reinforced thermoplastic material. Such pipe sections may be lightweight and flexible while exhibiting improved strength characteristics.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a polyarylene sulfide composition. The polyarylene sulfide composition includes a polyarylene sulfide and a crosslinked impact modifier. Such pipe sections exhibit high strength characteristics and flexibility as well as resistance to degradation, even in extreme temperature environments, while maintaining desirable processing characteristics.
Abstract:
A fiber-reinforced polymer composition a plurality of continuous fibers embedded and distributed within a thermoplastic polymer matrix is provided. The thermoplastic polymer matrix constitutes from about 20 wt. % to about 90 wt. % of the composition and the continuous fibers constitute from about 10 wt. % to about 80 wt. % of the composition. Further, the polymer composition has a deflection temperature under load of about 60° C. or more as determined in accordance with ISO 75:2013 at a load of 3.5 MPa.
Abstract:
A fiber-reinforced polymer composition a plurality of continuous fibers embedded and distributed within a thermoplastic polymer matrix is provided. The thermoplastic polymer matrix constitutes from about 20 wt. % to about 90 wt. % of the composition and the continuous fibers constitute from about 10 wt. % to about 80 wt. % of the composition. Further, the polymer composition has a deflection temperature under load of about 60° C. or more as determined in accordance with ISO 75:2013 at a load of 3.5 MPa.
Abstract:
A die and method for impregnating at least one fiber roving with a polymer resin are disclosed. The die includes an impregnation section. The impregnation section includes an impregnation zone configured to impregnate the roving with the resin. The impregnation zone includes a plurality of contact surfaces. At least one of the plurality of contact surfaces is configured such that a normal force of the roving is less than or equal to a lift force of the resin at an impregnation location on the contact surface during impregnation of the roving with the resin by the contact surface.
Abstract:
A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a polyarylene sulfide composition. The polyarylene sulfide composition includes a polyarylene sulfide and a crosslinked impact modifier. Such pipe sections exhibit high strength characteristics and flexibility as well as resistance to degradation, even in extreme temperature environments, while maintaining desirable processing characteristics.
Abstract:
A fiber-reinforced polymer composition that contains a polymer matrix and a plurality of long reinforcing fibers distributed within the polymer matrix is provided. The polymer matrix contains a propylene impact copolymer having a first melt flow rate of from about 10 to about 100 grams per 10 minutes and a metallocene-catalyzed propylene homopolymer having a second melt flow rate of from about 10 to about 100 grams per 10 minutes, wherein the ratio of the second melt flow rate to the first melt flow rate is from about 0.1 to about 2. The composition exhibits a toluene equivalent volatile organic content of about 50 μgC/g or less as determined in accordance with VDA 278:2002.