摘要:
A paste composition for an electrode, the paste composition comprising: phosphorous-containing copper alloy particles in which the content of phosphorous is from 6% by mass to 8% by mass; glass particles; a solvent; and a resin.
摘要:
Disclosed is a constitution formed from an oxide of an element having a smaller work function than aluminum. This oxide is comprises an oxide of vanadium (V), an oxide of an alkaline earth metal and an oxide of an alkali metal. The elements for the alkaline earth metal are comprise one or more elements out of the elements calcium (Ca), strontium (Sr) and barium (Ba) and at least contain barium. The elements for the alkali metal include at least one or more of sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). When the element vanadium is included as vanadium pentoxide (V2O5), the vanadium pentoxide content is 40-70 wt %. Thus, a glass composition for aluminum electrode wiring with an apparent work function for electrode wiring that is smaller than the work function for aluminum (Al) can be provided without the inclusion of lead.
摘要:
An object of the present invention is to provide an electronic component using a Cu-based conductive material that can suppress oxidization even in a heat treatment in an oxidizing atmosphere and that can suppress an increase in an electrical resistance. In an electronic component having an electrode or a wiring, a ternary alloy made from three elements consisting of Cu, Al, and Co is used as a Cu-based wiring material that can prevent oxidization of the electrode or the wiring. Specifically, part or the whole of the electrode or the wiring has a chemical composition in which an Al content is 10 at % to 25 at %, a Co content is 5 at % to 20 at %, and the balance is composed of Cu and unavoidable impurities, and the chemical composition represents a ternary alloy in which two phases of a Cu solid solution formed by Al and Co being dissolved into Cu and a CoAl intermetallic compound coexist together.
摘要:
A low softening point glass composition, which is substantially free from lead, bismuth and antimony and comprises oxides of vanadium, phosphorous, tellurium and iron, a softening point of the composition being 380° C. or lower.
摘要:
Disclosed is a constitution formed from an oxide of an element having a smaller work function than aluminum. This oxide is comprises an oxide of vanadium (V), an oxide of an alkaline earth metal and an oxide of an alkali metal. The elements for the alkaline earth metal are comprise one or more elements out of the elements calcium (Ca), strontium (Sr) and barium (Ba) and at least contain barium. The elements for the alkali metal include at least one or more of sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). When the element vanadium is included as vanadium pentoxide (V2O5), the vanadium pentoxide content is 40-70 wt %. Thus, a glass composition for aluminum electrode wiring with an apparent work function for electrode wiring that is smaller than the work function for aluminum (Al) can be provided without the inclusion of lead.
摘要:
The paste composition for an electrode are constituted with metal particles having copper as a main component, a phosphorous-containing compound, glass particles, a solvent, and a resin. Further, the photovoltaic cell has an electrode formed by using the paste composition for an electrode.
摘要:
The conductive paste contains the following dispersed in a binder resin dissolved in a solvent: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide-comprising powder. The oxide contains vanadium with a valence no greater than 4 and a glass phase. In the method for manufacturing an electronic component, the conductive paste is applied to a substrate and fired, forming electrode wiring. The electronic component is provided with electrode wiring that has: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide affixing the particles to a substrate. The oxide contains vanadium with a valence no greater than 4. A compound layer containing vanadium and aluminum is formed on the surfaces of the particles, and the vanadium in the compound layer includes vanadium with a valence no greater than 4. This results in an electrode wiring with high reliability and water resistance.
摘要:
A wiring member comprising a substrate, a copper wiring layer having an electrical resistivity of not larger than 4×10−6 Ωcm in directly or indirectly contact with the substrate, an aluminum diffusion layer, contiguous to the copper wiring layer, having an aluminum concentration gradient descending towards the inside, and an aluminum oxide layer contiguous to and covering the aluminum diffusion layer, wherein a ratio of a thickness of the copper wiring layer to a thickness of the aluminum diffusion layer is 1.5 to 5. The disclosure is also concerned with a method of manufacturing the wiring member and an electronic device.
摘要:
A glass composition according to the present invention comprises: transition metals; phosphorus; barium; and zinc, the transition metals including: vanadium; and tungsten and/or iron, the glass composition not containing substances included in the JIG level A and B lists, an softening point of the glass composition being from 430 to 530° C., an average linear expansion coefficient of the glass composition being from 6 to 9 ppm/° C. at temperatures from 30 to 250° C.
摘要:
Provided is a conductive paste which contains an inexpensive metal, such as copper or aluminum, as an electrode wiring material and has oxidation resistance that enables the paste to withstand a high-temperature process performed in an oxidizing atmosphere and an electronic part equipped with electrode wiring formed from the paste. The electronic part in accordance with the present invention is equipped with electrode wiring that comprises a conductive glass phase containing transition metals and phosphorus, metal particles, and none of the substances prohibited by the RoHS directive. The electronic part is characterized in that each of the transition metals contained in the conductive glass phase is present in the state of having a plurality of oxidation numbers and that the proportion of the atoms which have the largest oxidation number for each transition metal satisfies a given relationship.