Mask for EUV lithography and method of manufacturing the same

    公开(公告)号:US11249384B2

    公开(公告)日:2022-02-15

    申请号:US16441700

    申请日:2019-06-14

    Abstract: A method of manufacturing an extreme ultraviolet (EUV) lithography mask includes forming an image pattern in an absorption layer of EUV mask blank. The EUV mask blank includes: a multilayer stack including alternating molybdenum (Mo) and silicon (Si) layers disposed over a first surface of a mask substrate, a capping layer disposed over the multilayer stack, and an absorption layer disposed over the capping layer. A border region surrounds the image pattern having a trench wherein the absorption layer, the capping layer and at least a portion of the multilayer stack are etched. Concave sidewalls are formed in the border region or an inter-diffused portion is formed in the multilayer stack of the trench.

    EUV masks to prevent carbon contamination

    公开(公告)号:US11221554B2

    公开(公告)日:2022-01-11

    申请号:US16746640

    申请日:2020-01-17

    Abstract: An extreme ultra-violet (EUV) mask and method for fabricating the same is disclosed. For example, the EUV mask includes a substrate, a multi-layered mirror layer formed on the substrate, a metal capping layer formed on the multi-layered mirror layer, and a multi-layered absorber layer formed on the metal capping layer. The multi-layered absorber layer includes features etched into the multi-layered absorber layer to define structures on a semiconductor device.

    Extreme ultraviolet mask with alloy based absorbers

    公开(公告)号:US12181797B2

    公开(公告)日:2024-12-31

    申请号:US17483302

    申请日:2021-09-23

    Abstract: An extreme ultraviolet mask including a substrate, a reflective multilayer stack on the substrate and a multi-layer patterned absorber layer on the reflective multilayer stack is provided. Disclosed embodiments include an absorber layer that includes an alloy comprising ruthenium (Ru), chromium (Cr), platinum (Pt), gold (Au), iridium (Ir), titanium (Ti), niobium (Nb), rhodium (Rh), molybdenum (Mo), tungsten (W) or palladium (Pd), and at least one alloying element. The at least one alloying element includes ruthenium (Ru), chromium (Cr), tantalum (Ta), platinum (Pt), gold (Au), iridium (Ir), titanium (Ti), niobium (Nb), rhodium (Rh), molybdenum (Mo), hafnium (Hf), boron (B), nitrogen (N), silicon (Si), zirconium (Zr) or vanadium (V). Other embodiments include a multi-layer patterned absorber structure with layers that include an alloy and an alloying element, where at least two of the layers of the multi-layer structure have different compositions.

    Method of critical dimension control by oxygen and nitrogen plasma treatment in EUV mask

    公开(公告)号:US11650493B2

    公开(公告)日:2023-05-16

    申请号:US17568037

    申请日:2022-01-04

    CPC classification number: G03F1/24 G03F1/70 G03F7/2004

    Abstract: The present disclosure describes a method of patterning a semiconductor wafer using extreme ultraviolet lithography (EUVL). The method includes receiving an EUVL mask that includes a substrate having a low temperature expansion material, a reflective multilayer over the substrate, a capping layer over the reflective multilayer, and an absorber layer over the capping layer. The method further includes patterning the absorber layer to form a trench on the EUVL mask, wherein the trench has a first width above a target width. The method further includes treating the EUVL mask with oxygen plasma to reduce the trench to a second width, wherein the second width is below the target width. The method may also include treating the EUVL mask with nitrogen plasma to protect the capping layer, wherein the treating of the EUVL mask with the nitrogen plasma expands the trench to a third width at the target width.

Patent Agency Ranking