摘要:
A MOSFET includes a silicon carbide substrate, a drift layer made of silicon carbide and including a main surface having an off angle of 50° or more and 65° or less with respect to a {0001} plane, and a gate oxide film formed on and in contact with the main surface of the drift layer. The drift layer includes a p type body region formed to include a region in contact with the gate oxide film. The p type body region has an impurity density of 5×1016 cm−3 or more. A plurality of p type regions of p conductivity type located apart from one another in a direction perpendicular to a thickness direction of the drift layer are arranged in a region in the drift layer lying between the p type body region and the silicon carbide substrate.
摘要翻译:MOSFET包括碳化硅衬底,由碳化硅制成的漂移层,并且包括相对于{0001}面具有50°以上且65°以下的偏离角的主表面,以及形成在 并与漂移层的主表面接触。 漂移层包括形成为包括与栅氧化膜接触的区域的p型体区。 p型体区的杂质浓度为5×10 16 cm -3以上。 在垂直于漂移层的厚度方向的方向上彼此分离的p导电类型的多个p型区域布置在位于p型体区域和碳化硅衬底之间的漂移层中的区域中。
摘要:
An MOSFET includes a silicon carbide substrate, an active layer, a gate oxide film, and a gate electrode. The active layer includes a body region where an inversion layer is formed at a region in contact with the gate oxide film by application of voltage to the gate electrode. The body region includes a low concentration region arranged at a region where an inversion layer is formed, and containing impurities of low concentration, and a high concentration region adjacent to the low concentration region in the carrier mobile direction in the inversion layer, arranged in a region where the inversion layer is formed, and containing impurities higher in concentration than in the low concentration region.
摘要:
A substrate is provided with a main surface having an off angle of 5° or smaller relative to a reference plane. The reference plane is a {000-1} plane in the case of hexagonal system and is a {111} plane in the case of cubic system. A silicon carbide layer is epitaxially formed on the main surface of the substrate. The silicon carbide layer is provided with a trench having first and second side walls opposite to each other. Each of the first and second side walls includes a channel region. Further, each of the first and second side walls substantially includes one of a {0-33-8} plane and a {01-1-4} plane in the case of the hexagonal system and substantially includes a {100} plane in the case of the cubic system.
摘要:
A substrate is provided with a main surface having an off angle of 5° or smaller relative to a reference plane. The reference plane is a {000-1} plane in the case of hexagonal system and is a {111} plane in the case of cubic system. A silicon carbide layer is epitaxially formed on the main surface of the substrate. The silicon carbide layer is provided with a trench having first and second side walls opposite to each other. Each of the first and second side walls includes a channel region. Further, each of the first and second side walls substantially includes one of a {0-33-8} plane and a {01-1-4} plane in the case of the hexagonal system and substantially includes a {100} plane in the case of the cubic system.
摘要:
A MOSFET includes a silicon carbide substrate, an active layer, a gate oxide film, and a gate electrode. The active layer includes a p type body region in which an inversion layer is formed when the gate electrode is fed with a voltage. The inversion layer has an electron mobility μ dependent more strongly on an acceptor concentration Na of a channel region of the p type body region, as compared with a dependency of the electron mobility μ being proportional to the reciprocal of the acceptor concentration Na. The acceptor concentration Na in the channel region of the p type body region is not less than 1×1016 cm−3 and not more than 2×1018 cm3. The channel length (L) is equal to or smaller than 0.43 μm. The channel length (L) is equal to or longer than a spreading width d of a depletion layer in the channel region. The spreading width d is expressed by d=D·Na−C.
摘要:
A method of manufacturing an SiC semiconductor device includes the steps of forming a first oxide film on a first surface of an SiC semiconductor, removing the first oxide film, and forming a second oxide film constituting the SiC semiconductor device on a second surface exposed as a result of removal of the first oxide film in the SiC semiconductor. Between the step of removing the first oxide film and the step of forming a second oxide film, the SiC semiconductor is arranged in an atmosphere cut off from an ambient atmosphere.
摘要:
A silicon carbide semiconductor device having excellent electrical characteristics including channel mobility and a method for manufacturing the same are provided. The method for manufacturing a silicon carbide semiconductor device includes: an epitaxial layer forming step of preparing a semiconductor film of silicon carbide; a gate insulating film forming step of forming an oxide film on a surface of the semiconductor film; a nitrogen annealing step of performing heat treatment on the semiconductor film on which the oxide film is formed, in a nitrogen-containing atmosphere; and a post heat treatment step of performing, after the nitrogen annealing step, post heat treatment on the semiconductor film on which the oxide film is formed, in an atmosphere containing an inert gas. The heat treatment temperature in the post heat treatment step is higher than that in the nitrogen annealing step and lower than a melting point of the oxide film.
摘要:
A substrate has a surface made of a semiconductor having a hexagonal single-crystal structure of polytype 4H. The surface of the substrate is constructed by alternately providing a first plane having a plane orientation of (0-33-8), and a second plane connected to the first plane and having a plane orientation different from the plane orientation of the first plane. A gate insulating film is provided on the surface of the substrate. A gate electrode is provided on the gate insulating film.
摘要:
A silicon carbide layer is epitaxially formed on a main surface of a substrate. The silicon carbide layer is provided with a trench having a side wall inclined relative to the main surface. The side wall has an off angle of not less than 50° and not more than 65° relative to a {0001} plane. A gate insulating film is provided on the side wall of the silicon carbide layer. The silicon carbide layer includes: a body region having a first conductivity type and facing a gate electrode with the gate insulating film being interposed therebetween; and a pair of regions separated from each other by the body region and having a second conductivity type. The body region has an impurity density of 5×1016 cm−3 or greater. This allows for an increased degree of freedom in setting a threshold voltage while suppressing decrease of channel mobility.
摘要翻译:在基板的主表面上外延形成碳化硅层。 碳化硅层设置有具有相对于主表面倾斜的侧壁的沟槽。 侧壁相对于{0001}面具有不小于50°且不超过65°的偏离角。 栅极绝缘膜设置在碳化硅层的侧壁上。 碳化硅层包括:具有第一导电类型且面对栅电极的主体区域,栅极绝缘膜介于其间; 以及一对由身体区域彼此隔开并具有第二导电类型的区域。 体区的杂质密度为5×1016 cm -3以上。 这允许在抑制信道移动性的降低的同时增加设置阈值电压的自由度。
摘要:
A MOSFET includes a semiconductor substrate having a trench formed in a main surface, a gate oxide film, a gate electrode, and a source interconnection. A semiconductor substrate includes an n-type drift layer and a p-type body layer. The trench is formed to penetrate the body layer and to reach the drift layer. The trench includes an outer peripheral trench arranged to surround an active region when viewed two-dimensionally. On the main surface opposite to the active region when viewed from the outer peripheral trench, a potential fixing region where the body layer is exposed is formed. The source interconnection is arranged to lie over the active region when viewed two-dimensionally. The potential fixing region is electrically connected to the source interconnection.