Abstract:
A bandpass filter having a transmission coefficient-frequency spectrum characteristic curve with a notch on each side of the passband is disclosed.
Abstract:
Techniques and mechanisms for providing precisely fabricated structures of a semiconductor package. In an embodiment, a build-up carrier of the semiconductor package includes a layer of porous dielectric material. Seed copper and plated copper is disposed on the layer of porous dielectric material. Subsequent etching is performed to remove copper adjacent to the layer of porous dielectric material, forming a gap separating a suspended portion of a MEMS structure from the layer of porous dielectric material. In another embodiment, the semiconductor package includes a copper structure disposed between portions of an insulating layer or portions of a layer of silicon nitride material. The layer of silicon nitride material couples the insulating layer to another insulating layer. One or both of the insulating layers are each protected from desmear processing with a respective release layer structure.
Abstract:
Embodiments of the present disclosure are directed toward through-silicon via (TSV)-based devices and associated techniques and configurations. In one embodiment, an apparatus includes a die having active circuitry disposed on a first side of the die and a second side disposed opposite to the first side, a bulk semiconductor material disposed between the first side and the second side of the die and a device including one or more of a capacitor, resistor or resonator disposed in the bulk semiconductor material, the capacitor, resistor or resonator including one or more TSV structures that extend through the bulk semiconductor material, an electrically insulative material disposed in the one or more TSV structures and an electrode material or resistor material in contact with the electrically insulative material within the one or more TSV structures.
Abstract:
An apparatus includes a die with through-silicon vias and radio frequency integrated circuit capabilities and it is vertically integrated with a phased-array antenna substrate. The through-silicon via and a radio frequency integrated circuit is coupled to a plurality of antenna elements disposed on the phased-array antenna substrate where each of the plurality of antenna elements is coupled to the through-silicon vias and radio frequency integrated circuit through a plurality of through-silicon vias. A process of assembling the through-silicon vias and radio frequency integrated circuit to the phased-array antenna substrate includes testing the apparatus.
Abstract:
A voltage regulator for one or more dies in a multi-stack integrated circuit includes an inductor located on a die, a voltage controller that is electrically coupled to the inductor and is also located on the die, and a capacitor that is electrically coupled to the inductor and the voltage controller and is also located on the die. The inductor defines an interior space and the voltage controller and the capacitor are located within the interior space of the inductor. The inductor can be a lateral inductor or a through layer via inductor. The multi-stack integrated circuit may have multiple dies. A voltage controller may be electrically coupled to each of the dies, although it may be located on only one of the dies. Alternatively, separate voltage controllers may be electrically coupled to each of the multiple dies and may be located on each of the respective dies.
Abstract:
An apparatus includes a die with through-silicon vias and radio frequency integrated circuit capabilities and it is vertically integrated with a phased-array antenna substrate. The through-silicon via and a radio frequency integrated circuit is coupled to a plurality of antenna elements disposed on the phased-array antenna substrate where each of the plurality of antenna elements is coupled to the through-silicon vias and radio frequency integrated circuit through a plurality of through-silicon vias. A process of assembling the through-silicon vias and radio frequency integrated circuit to the phased-array antenna substrate includes testing the apparatus.
Abstract:
In some embodiments, a multiband antenna array using electromagnetic bandgap structures is presented. In this regard, an antenna array is introduced having two or more planar antennas situated substantially on a surface of a substrate, a first set of electromagnetic bandgap (EBG) cells situated substantially between and on plane with the antennas, and a second set of EBG cells situated within the substrate below the antennas. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus relating to package embedded three dimensional baluns are described. In one embodiment, components of one or more baluns may be embedded in a single semiconductor substrate. Other embodiments are also described.
Abstract:
The techniques described herein reduce the substrate noise current that exists when digital and analog components reside on the same microelectronic die. Single or multiple rows of isolation vias form isolation barriers between the individual circuit blocks. The isolation vias may be hollow or (lined or filled) with a conductive or non-conductive material.
Abstract:
A high performance antenna incorporated on a microelectronic substrate by forming low-loss dielectric material structures in the microelectronic substrates and forming the antenna on the low-loss dielectric material structures. The low-loss dielectric material structures may be fabricated by forming a cavity in a build-up layer of the microelectronic substrate and filling the cavity with a low-loss dielectric material.