Abstract:
A substrate transfer device according to an embodiment includes: a holding part configured to hold a substrate having a pattern formed on a front surface thereof; and a supply part configured to supply an inert gas, which locally keeps the front surface of the substrate held by the holding part in a low oxygen state, to the front surface of the substrate.
Abstract:
Generation of dust from a peripheral portion of a substrate can be suppressed, and a processed substrate can be suppressed from being adversely affected by a pre-processed substrate. Further, an actual elevation state of the member configured to be moved up and down to support the substrate can be investigated. A substrate transfer device includes a first supporting portion, a second supporting portion and an elevating mechanism. The first supporting portion and the second supporting portion are configured to support a substrate from below the substrate. The elevating mechanism is configured to elevate the second supporting portion up and down between a first position higher than a height of the first supporting portion and a second position lower than the height of the first supporting portion. The substrate transfer device further includes a detecting mechanism configured to detect an elevation state of the second supporting portion.
Abstract:
Generation of dust from a peripheral portion of a substrate can be suppressed, and a processed substrate can be suppressed from being adversely affected by a pre-processed substrate. Further, an actual elevation state of the member configured to be moved up and down to support the substrate can be investigated. A substrate transfer device includes a first supporting portion, a second supporting portion and an elevating mechanism. The first supporting portion and the second supporting portion are configured to support a substrate from below the substrate. The elevating mechanism is configured to elevate the second supporting portion up and down between a first position higher than a height of the first supporting portion and a second position lower than the height of the first supporting portion. The substrate transfer device further includes a detecting mechanism configured to detect an elevation state of the second supporting portion.
Abstract:
A substrate processing apparatus includes a rotation driving device configured to rotate a rotary table holding a substrate; an electric heater provided at the rotary table and configured to heat the substrate; a power receiving electrode provided at the rotary table and electrically connected to the electric heater; a power feeding electrode configured to be contacted with the power receiving electrode to supply a power to the electric heater via the power receiving electrode; an electrode moving device configured to connect and disconnect the power feeding electrode and the power receiving electrode relatively; a power feeder configured to supply the power to the power feeding electrode; a processing cup disposed to surround the rotary table; at least one processing liquid nozzle configured to supply a processing liquid onto the substrate; a processing liquid supply device configured to supply the processing liquid to the processing liquid nozzle; and a controller.
Abstract:
A substrate processing apparatus includes a rotary table configured to hold and rotate a substrate; an electronic component provided at the rotary table and configured to be rotated along with the rotary table; a first electrode unit provided at the rotary table and configured to be rotated along with the rotary table, the first electrode unit comprising multiple first electrodes electrically connected to the electronic component via multiple first conductive lines; an electric device configured to perform a power supply to the electronic component and a transmission/reception of signals; a second electrode unit comprising multiple second electrodes electrically connected to the electric device via multiple second conductive lines and arranged at positions respectively corresponding to the multiple first electrodes to be brought into contact with the multiple first electrodes; and an electrode moving device configured to connect/disconnect the first electrode unit to/from the second electrode unit.
Abstract:
A substrate processing apparatus includes a rotation driving mechanism configured to rotate a rotary table configured to hold a substrate; an electric heater provided in the rotary table to be rotated along with the rotary table and configured to heat the substrate; a power receiving electrode provided in the rotary table to be rotated along with the rotary table and electrically connected to the electric heater; a power feeding electrode configured to be contacted with the power receiving electrode and configured to supply a power to the electric heater via the power receiving electrode; an electrode moving mechanism; a power feeder configured to supply the power to the power feeding electrode; a processing cup surrounding the rotary table; at least one processing liquid nozzle configured to supply a processing liquid; a processing liquid supply mechanism configured to supply at least an electroless plating liquid; and a controller.
Abstract:
A substrate transfer apparatus unloads a substrate from a transfer container in which a cover body airtightly closes a substrate unloading opening formed at a front surface of a container main body and multiple substrates are accommodated in the form of shelves. The substrate transfer apparatus includes a load port to which the transfer container is loaded; a detection unit configured to detect an accommodation status of the substrate in the container main body that is loaded to the load port and separated from the cover body; a substrate transfer device configured to enter the container main body and unload the substrate; and a correction device configured to correct the accommodation status of the substrate in the container main body before the substrate is unloaded from the container main body by the substrate transfer device when the detection unit detects abnormality in the accommodation status.
Abstract:
A substrate can be appropriately accommodated in a cassette. A substrate transfer device includes a substrate transfer unit that delivers the substrate with respect to the cassette configured to accommodate the substrate; a detection unit that detects the substrate accommodated in the cassette; and a control device than controls the substrate transfer unit. Further, the control device includes a transfer control unit configured to control the substrate transfer unit to accommodate the substrate at a predetermined target accommodation position; a determination unit configured to determine an actual accommodation position for the substrate based on a detection result of the detection unit after the detection unit detects the substrate accommodated in the cassette; and a correction unit configured to correct a predetermined target accommodation position as an accommodation position for another substrate based on a difference between the actual accommodation position and the target accommodation position for the substrate.
Abstract:
A processing liquid nozzle includes: an ultrasonic wave generator including a oscillator that generates ultrasonic waves and a oscillating body that is joined to the oscillator; a first supply flow path configured to supply a first liquid to a position in contact with the oscillating body of the ultrasonic wave generator; an ejection flow path configured to supply the first liquid to which the ultrasonic waves are applied by the ultrasonic wave generator to an ejection port; and a second supply flow path connected to the ejection flow path on a downstream side from the ultrasonic wave generator and configured to supply a second liquid to the ejection flow path.
Abstract:
There is provided a drying apparatus for covering an upper surface of the substrate with an uneven pattern formed thereon with a liquid film and subsequently drying the substrate, including: a first heat transfer part whose temperature is adjusted to a first temperature, wherein a first heat is transferred between the first heat transfer part and the substrate by a first temperature difference; a second heat transfer part whose temperature is adjusted to a second temperature different from the first temperature, wherein a second heat is transferred between the second heat transfer part and the substrate by a second temperature difference; and a controller configured to control the first temperature and the second temperature and to control a surface tension distribution of the liquid film so as to control an agglomeration of the liquid film.