Abstract:
Provided is a heat insulation structure used for a vertical heat treatment apparatus that performs a heat treatment on a substrate. The vertical heat treatment apparatus includes: a processing container having a double tube structure including an inner tube and an outer tube closed upward, the processing container having an opening at a lower end thereof; a gas supply section and exhaust section provided on a lower side of the processing container; a lid configured to introduce or discharge the substrate into or from the opening and to open/close the opening; and a heating section provided to cover the processing container from an outside. The heat insulation structure is provided between the inner tube and the outer tube.
Abstract:
Disclosed is a heat treatment apparatus including: a heating unit that heats an inside of a processing chamber that accommodates a plurality of workpieces; a temperature drop rate model storing unit that stores a temperature drop rate model; and a heat treatment performing unit that sets the temperature drop rate model stored in the temperature drop model storing unit and sets the inside of the processing chamber to the temperature and the time represented in the temperature drop rate model. The temperature drop rate model storing unit stores a plurality of temperature drop rate models, each of which has a different temperature drop rate. The processing chamber is divided into a plurality of zones, and the temperature drop rate mode is set for each of the zones. The heat treatment performing unit sets different temperature drop rate models in a plurality of zones to heat the plurality of workpieces.
Abstract:
A temperature detecting element is fixed reliably at an accurate position to enable improvement in a rising characteristic of a temperature and high-accuracy temperature control. Provided is a temperature sensor including a temperature detecting element detecting a temperature in a branch tube branched from a main tube and a positioning supporting mechanism positioning and supporting the temperature detecting element. Tension is applied to a cord of the temperature detecting element. The positioning supporting mechanism is supported by the tensioned cord to position and support the temperature detecting element. The positioning supporting mechanism includes a supporting tube supporting the temperature detecting element, a positioning member supporting the supporting tube and fixed at a set position, and a tensioner applying tension to the cord of the temperature detecting element.
Abstract:
There is provided a heat treatment apparatus for performing a predetermined film forming process on a substrate by mounting the substrate on a surface of a rotary table installed in a processing vessel and heating the substrate by a heating part while rotating the rotary table. The heat treatment apparatus includes: a first temperature measuring part of a contact-type configured to measure a temperature of the heating part; a second temperature measuring part of a non-contact type configured to measure a temperature of the substrate mounted on the rotary table in a state where the rotary table is being rotated; and a temperature control part configured to control the heating part based on a first measurement value measured by the first temperature measuring part and a second measurement value measured by the second temperature measuring part.
Abstract:
Disclosed is a heat treatment apparatus including: a processing container configured to accommodate a substrate; a furnace body having a heater configured to heat the substrate accommodated in the processing container and provided around the processing container; a blower configured to supply a coolant to a space between the processing container and the furnace body; and a controller having a continuous operation mode in which the blower is continuously energized and an intermittent operation mode in which energization and de-energization of the blower are repeated, and configured to control driving of the blower based on an instruction voltage. The controller drives the blower in the intermittent operation mode when the instruction voltage is higher than 0 V and lower than a predetermined threshold voltage.
Abstract:
The heat treatment apparatus includes: a processing chamber which accommodates a processing object; a heating unit which heats the processing object accommodated in the processing chamber; a temperature detecting unit which detects an internal temperature of the processing chamber; and a controller which sets a second setting temperature identical to as a temperature detected by the temperature detecting unit when the temperature detected by the temperature detecting unit falls below a predetermined first setting temperature due to an external disturbance; controls the heating unit so that a third setting temperature between the second setting temperature and the first setting temperature becomes identical to the temperature detected by the temperature detecting unit; and controls the heating unit so that the first setting temperature becomes identical to the temperature detected by the temperature detecting unit after the third setting temperature becomes identical to the temperature detected by the temperature detecting unit.
Abstract:
The controller receives information including a plurality of evaluation indexes, a weight of each evaluation index, the number of times for calculating a value of an evaluation function, and initial parameter values, and performs a simulation based on the received information. Then, the controller calculates a value of an evaluation function based on a result of the simulation, and determines whether the calculated value of the evaluation function is minimum, to update parameters when it is determined that the value of the evaluation function is minimum. In the calculation of a value of the evaluation function, a value of the evaluation function is calculated again based on the number of times for calculating a value of an evaluation function. The controller generates new parameters by a genetic algorithm when a value of an evaluation function is calculated again.