Abstract:
A through silicon via structure is located in a recess of a substrate. The through silicon via structure includes a barrier layer, a buffer layer and a conductive layer. The barrier layer covers a surface of the recess. The buffer layer covers the barrier layer. The conductive layer is located on the buffer layer and fills the recess, wherein the contact surface between the conductive layer and the buffer layer is smoother than the contact surface between the buffer layer and the barrier layer. Moreover, a through silicon via process forming said through silicon via structure is also provided.
Abstract:
A method for forming patterns includes the following steps. A first layout including a first target pattern and a first unprintable dummy pattern is provided. A second layout including a second target pattern and a second printable dummy pattern are provided, wherein at least part of the second printable dummy pattern overlaps the first unprintable dummy pattern exposure limit, such that the second printable dummy pattern cannot be formed in a wafer.
Abstract:
A method of fabricating a semiconductor device with fin-shaped structures includes respectively forming first fin-shaped structures in a first region and a second region of a semiconductor substrate, depositing a dielectric layer to completely cover the first fin-shaped structures, removing the first fin-shaped structures in the second region so as to form trenches in the dielectric layer, and performing an in-situ doping epitaxial growth process so as to respectively form second fin-shaped structures in the trenches.
Abstract:
The present invention relates to a through silicon via (TSV). The TSV is disposed in a substrate including a via opening penetrating through a first surface and a second surface of the substrate. The TSV includes an insulation layer, a barrier layer, a buffer layer and a conductive electrode. The insulation layer is disposed on a surface of the via opening. The barrier layer is disposed on a surface of the insulation layer. The buffer layer is disposed on a surface of the barrier layer. The conductive electrode is disposed on a surface of the buffer layer and a remainder of the via opening is completely filled with the conductive electrode. A portion of the buffer layer further covers a surface of the conductive electrode at a side of the second surface and said portion is level with the second surface.
Abstract:
A semiconductor device includes a semiconductor substrate, an isolation structure, and a first electrically conductive structure. The semiconductor substrate has a planar device region and a fin device region. The semiconductor substrate includes a mesa structure disposed in the planar device region and fin-shaped structures disposed in the fin device region. The isolation structure is disposed on the semiconductor substrate and includes a first portion which is disposed on the planar device region and covers a sidewall of the mesa structure, and the isolation structure further includes a second portion which is disposed on the fin device region and located between the fin-shaped structures. The first electrically conductive structure is disposed on the planar device region. The first electrically conductive structure is partly disposed above the mesa structure in a vertical direction and partly disposed above the first portion of the isolation structure in the vertical direction.
Abstract:
A capacitor on a fin structure includes a fin structure. A dielectric layer covers the fin structure. A first electrode extension is embedded within the fin structure. A first electrode penetrates the dielectric layer and contacts the first electrode extension. A second electrode and a capacitor dielectric layer are disposed within the dielectric layer. The capacitor dielectric layer surrounds the second electrode, and the capacitor dielectric layer is between the second electrode and the first electrode extension.
Abstract:
A semiconductor device includes a fin-shaped structure on the substrate, a shallow trench isolation (STI) around the fin-shaped structure, a single diffusion break (SDB) structure in the fin-shaped structure for dividing the fin-shaped structure into a first portion and a second portion; a first gate structure on the fin-shaped structure, a second gate structure on the STI, and a third gate structure on the SDB structure. Preferably, a width of the third gate structure is greater than a width of the second gate structure and each of the first gate structure, the second gate structure, and the third gate structure includes a U-shaped high-k dielectric layer, a U-shaped work function metal layer, and a low-resistance metal layer.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first gate structure on the first region and a second gate structure on the second region; forming a first spacer around the first gate structure; forming a first epitaxial layer adjacent to two sides of the first spacer; forming a buffer layer on the first gate structure; and forming a contact etch stop layer (CESL) on the buffer layer on the first region and the second gate structure on the second region.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a first gate structure and a second gate structure on the fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; removing the second gate structure and part of the fin-shaped structure to forma first trench; forming a dielectric layer into the first trench; and planarizing part of the dielectric layer to form a single diffusion break (SDB) structure. Preferably, the top surfaces of the SDB structure and the first gate structure are coplanar.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a patterned mask on the second region; and performing a process to enlarge the first fin-shaped structure so that the top surfaces of the first fin-shaped structure and the second fin-shaped structure are different.