摘要:
A semiconductor structure including a highly strained selective epitaxial top layer suitable for use in fabricating a strained channel transistor. The top layer is deposited on the uppermost of a series of one or more lower layers. The lattice of each layer is mismatched with the lattice of its subjacent layer by an amount not less than the lattice mismatch between the lowest layer of the series and a substrate on which it resides. A trench is formed in the uppermost series layer. The trench has rounded corners so that a dielectric material filling the trench conforms to the round corners. The rounded corners are produced by heating the uppermost series layer after trench formation.
摘要:
A semiconductor device includes a substrate, a first epitaxial layer, a second epitaxial layer, a third epitaxial layer, a first trench, and a second trench. The first epitaxial layer is formed on the substrate. The first layer has lattice mismatch relative to the substrate. The second epitaxial layer is formed on the first layer, and the second layer has lattice mismatch relative to the first layer. The third epitaxial layer is formed on the second layer, and the third layer has lattice mismatch relative to the second layer. Hence, the third layer may be strained silicon. The first trench extends through the first layer. The second trench extends through the third layer and at least partially through the second layer. At least part of the second trench is aligned with at least part of the first trench, and the second trench is at least partially filled with an insulating material.
摘要:
A structure to improve carrier mobility of a MOS device in an integrated circuit. The structure comprises a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a conformal stress film covering the source region, the drain region, and the conductive gate. In addition, the structure may comprise a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a plurality of stress films covering the source region, the drain region, and the conductive gate. Moreover, the structure may comprise a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a spacer disposed adjacent to the conductive gate, the spacer having a width less than 550 angstroms; a stress film covering the source region, the drain region, the conductive gate, and the spacer.
摘要:
A semiconductor structure including a highly strained selective epitaxial top layer suitable for use in fabricating a strained channel transistor. The top layer is deposited on the uppermost of a series of one or more lower layers. The lattice of each layer is mismatched with the lattice of its subjacent layer by an amount not less than the lattice mismatch between the lowest layer of the series and a substrate on which it resides. A trench is formed in the uppermost series layer. The trench has rounded corners so that a dielectric material filling the trench conforms to the round corners. The rounded corners are produced by heating the uppermost series layer after trench formation.
摘要:
A strained silicon layer fabrication and a method for fabrication thereof employ a strained insulator material layer formed over a strained silicon layer in turn formed upon a strained silicon-germanium alloy material layer which is formed upon a relaxed material substrate. The strained insulator material layer provides increased fabrication options which provide for enhanced fabrication efficiency when fabricating the strained silicon layer fabrication.
摘要:
A method comprising providing a substrate having an NMOS device adjacent a PMOS device and forming a first stress layer over the NMOS and PMOS devices, wherein the first stress layer comprises a first tensile-stress layer or a compression-stress layer. An etch stop layer is formed over the first stress layer, and portions of the first stress layer and the etch stop layer are removed from over the NMOS device, leaving the first stress layer and the etch stop layer over the PMOS device. A second tensile-stress layer is formed over the NMOS device and over the first stress layer and the etch stop layer, and portions of the second tensile-stress layer and the etch stop layer are removed from over the PMOS device, leaving the second tensile-stress layer over the NMOS device.
摘要:
A method comprising providing a substrate having an NMOS device adjacent a PMOS device and forming a first stress layer over the NMOS and PMOS devices, wherein the first stress layer comprises a first tensile-stress layer or a compression-stress layer. An etch stop layer is formed over the first stress layer, and portions of the first stress layer and the etch stop layer are removed from over the NMOS device, leaving the first stress layer and the etch stop layer over the PMOS device. A second tensile-stress layer is formed over the NMOS device and over the first stress layer and the etch stop layer, and portions of the second tensile-stress layer and the etch stop layer are removed from over the PMOS device, leaving the second tensile-stress layer over the NMOS device.
摘要:
A method and system is disclosed for forming an improved isolation structure for strained channel transistors. In one example, an isolation structure is formed comprising a trench filled with a nitrogen-containing liner and a gap filler. The nitrogen-containing liner enables the isolation structure to reduce compressive strain contribution to the channel region.
摘要:
A semiconductor isolation trench includes a substrate and a trench formed therein. The trench is lined with a nitrogen-containing liner and filled with a dielectric material. The nitrogen-containing liner preferably contacts the active region of a device, such as a transistor, located adjacent to the trench.
摘要:
A strained channel transistor and method for forming the the strained channel transistor including a semiconductor rate; a gate dielectric overlying a channel region; a gate rode overlying the gate dielectric; source drain extension regions and source and drain (S/D) regions; wherein a sed dielectric portion selected from the group consisting of r of stressed offset spacers disposed adjacent the gate rode and a stressed dielectric layer disposed over the gate rode including the S/D regions is disposed to exert a strain channel region.