Abstract:
An electrosurgical instrument includes a shaft, a flexible portion, and a head coupled to the shaft through the flexible portion and pivotably coupled to the flexible portion. The head includes a non-conductive surface and an electrically conductive surface. The flexible portion is configured to bias the non-conductive surface and the electrically conductive surface towards a tissue surface, such as cartilage. The non-conductive surface may include a material having a thermal conductivity less than or equal to about 30 W/m*K and/or a volume resistivity greater than or equal to about 1×1014 ohm*cm. The non-conductive surface may include a ceramic such as Macor® ceramic, ZTA ceramic, and/or 99.5% alumina ceramic.
Abstract:
The invention discloses a bi-directional prediction method for video coding/decoding. When bi-directional prediction coding at the coding end, firstly the given forward candidate motion vector of the current image block is obtained for every image block of the current B-frame; the backward candidate motion vector is obtained through calculation, and the candidate bi-directional prediction reference block is obtained through bi-directional prediction method; the match is computed within the given searching scope and/or the given matching threshold; finally the optimal matching block is selected to determine the final forward motion vector, and the backward motion vector and the block residual. The present invention achieves the object of bi-directional prediction by coding a single motion vector, furthermore, it will not enhance the complexity of searching for a matching block at the coding end, and may save amount of coding the motion vector and represent the motion of the objects in video more actually. The present invention realizes a new prediction coding type by combining the forward prediction coding with the backward.
Abstract:
Digital images are resized according to a prescribed image scaling factor. An original image is re-sampled according to the scaling factor, resulting in an initial resized image. A probability of text (POT) map is generated for the initial resized image, where the POT map specifies a smoothed POT value for each pixel in the initial resized image. A weighting factor (WF) map is generated which maps each different smoothed POT value to a particular WF value. The WF map is used to calculate an adjusted luminance value for each pixel in the initial resized image, resulting in a final resized image.
Abstract:
In the invention, a rate distortion optimization (RDO) based rate control scheme is comprised of following two steps: first, does bit allocation for every frame in a GOP, and based on the allocated bits, a predicted quantization parameter is used to do the first rate distortion optimization mode selection for every macroblock in the current frame; second, the information of the current macroblock collected from the first rate distortion mode selection is used to calculate a final quantization parameter for rate control, and if the final quantization parameter is different from the predicted one, a second rate distortion mode selection will be executed again. A rate distortion optimization based rate control implementation includes following modules: a video coding encoder module (for example, H.264/JVT processing module), rate distortion optimization based macroblock mode selection and adaptive quantization module, virtual buffer, and global complexity estimation module. As RDO and rate control are considered together in the invention, the RDO based rate control scheme can achieve better coding performance while with accurate target bitrate control.
Abstract:
Textual image coding involves coding textual portions of an image. In an example embodiment, a textual block of an image is decomposed into multiple base colors and an index map, with the index map having index values that each reference a base color so as to represent the textual block. A set of neighbor index values are ascertained for a particular index of the index map. A context that matches the neighbor index values is generated from among multiple contexts. The matching context includes a set of symbols. At least one symbol-to-value mapping is determined based on the matching context and a symbol to which the particular index corresponds. The particular index is remapped to a particular value in accordance with the symbol-to-value mapping and the symbol to which the particular index corresponds.
Abstract:
A “Remote Display Generator,” as described herein, provides various techniques for providing high-fidelity displays with highly responsive interactive application experiences to clients across a wide range of network bandwidths for remotely hosted applications. In general, the Remote Display Generator uses a compression-friendly remote display architecture as a core. With this compression architecture, actual screen data from a remote server is read out from the display buffer frame by frame, and then compressed with a unified screen codec. Other technologies, including timer-driven screen update models and adaptive transmission mechanisms, are then integrated with various embodiments of the Remote Display Generator to improve overall user experience by improving display quality and responsiveness to user interaction with remotely hosted applications.
Abstract:
The invention provides human secreted proteins (SECP) and polynucleotides which identify and encode SECP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of SECP.
Abstract:
In order to provide a method and apparatus for forming a sheet metal, in which a three-dimensional product such as a prototype for commercialized press-forming can be formed in short time without limitations as to the shape and with high accuracy, preventing body wrinkles or reduction of the sheet thickness, a process of: performing drawing-forming to a predetermine height by pushing the forming punch having a desired shape in the sheet thickness direction with the edges of the blank workpiece being clamped; performing shape-forming with the shaping tool in the opposite side to the forming punch by increasing a clamping pressure to lock movement of a material with the forming punch being pushed; performing drawing-forming again by decreasing the clamping pressure and raising the forming punch by a desired height; and performing shape-forming with the shaping tool by increasing the clamping pressure to lock movement of a material, is repeated at least once.
Abstract:
An electrosurgical instrument includes a shaft, a flexible portion, and a head coupled to the shaft through the flexible portion and pivotably coupled to the flexible portion. The head includes a non-conductive surface and an electrically conductive surface. The flexible portion is configured to bias the non-conductive surface and the electrically conductive surface towards a tissue surface, such as cartilage. The non-conductive surface may include a material having a thermal conductivity less than or equal to about 30 W/m*K and/or a volume resistivity greater than or equal to about 1×1014 ohm*cm. The non-conductive surface may include a ceramic such as Macor® ceramic, ZTA ceramic, and/or 99.5% alumina ceramic.