Abstract:
A method for detecting defects during semiconductor device processing can include providing a substrate having a semiconductor comprising layer with electrically isolated application and test circuits are formed thereon, directing an electron current inducing beam to the test circuit; measuring a current between the first and the second contact pads in the test circuit; determining an electron beam induced current (EBIC); and identifying one or more defect locations in the test circuit based on the EBIC and a location of the electron beam corresponding to the EBIC. A test circuit can include a plurality of semiconductor devices connected in parallel, a first contact pad coupled to a first terminal of the semiconductor devices, and at least a second contact pad coupled to a substrate terminal associated with the semiconductor devices.
Abstract:
The disclosure provides a method of manufacturing a semiconductor device. The method comprises forming a shallow trench isolation structure, including performing a wet etch process to remove a patterned pad oxide layer located on a semiconductor substrate. The wet etch thereby produces a divot on upper lateral edges of a insulator-filled trench in the semiconductor substrate. Forming the shallow trench isolation structure also includes forming a nitride post on a vertical wall of the divot. Forming the nitride post includes depositing a nitride layer on the insulator, and dry etching the nitride layer. The dry etch is selective towards the nitride located adjacent the vertical wall such that a portion of the nitride layer remains on the vertical wall subsequent to the dry etching.
Abstract:
A gaming machine arranged to display a symbol in each element of a matrix of elements; each column of elements of said matrix of elements comprising a portion of a simulated rotatable reel and wherein at an occurrence of a trigger event at end of play of a main game; (a) said main game is completed and any prize is awarded, (b) at least one feature game may be awarded wherein each said rotatable reel is caused to be spun and brought to rest to display elements of said matrix in a first stage; said first stage displaying symbols in elements of at least one said column and uniform imagery in elements of each remaining said column; said feature game then progressing to a further stage wherein elements with said uniform imagery are populated by symbols of said elements of said at least one column.
Abstract:
The outer diameter roughing in a CNC lathe turning process utilizes generally inserts with zero degree negative clearance angle (N−0 degree Negative) for economic purposes. The common roughing tool holder is using the diamond shape insert, the so called CN_or DN_insert. In a variation of these conventional tool holders only one corner (mostly 80/55 degree) of the insert is in cutting operation. The other corner (110/125 degree) could be reused in another tool holder.
Abstract:
A metal fuse process that uses a thinner (e.g., 6000 Å) oxide (108) over the top interconnect (102). The oxide (108) is removed over the probe pads (106) for testing but is not removed over the fuses (104). Because the oxide (108) is thin at the upper corners of the fuse (104), the oxide (108) cracks over the fuse (104) during a laser pulse (114). A wet etch is then used to dissolve the exposed fuses (104).
Abstract:
A method for detecting defects during semiconductor device processing can include providing a substrate having a semiconductor comprising layer with electrically isolated application and test circuits are formed thereon, directing an electron current inducing beam to the test circuit; measuring a current between the first and the second contact pads in the test circuit; determining an electron beam induced current (EBIC); and identifying one or more defect locations in the test circuit based on the EBIC and a location of the electron beam corresponding to the EBIC. A test circuit can include a plurality of semiconductor devices connected in parallel, a first contact pad coupled to a first terminal of the semiconductor devices, and at least a second contact pad coupled to a substrate terminal associated with the semiconductor devices.
Abstract:
A system for secure information storage and delivery includes a vault repository that includes a secure vault associated with a user, wherein the secure vault is associated with a service level including at least one of a data type or a data size limit associated with the secure vault, the secure vault being adapted to receive and at least one data entry and securely store the at least one data entry if the at least one of a size or a type of the at least one data entry is consistent with the service level. A mobile vault server coupled to the vault repository creates a mobile vault on a mobile device based on the secure vault and is capable of authenticating the mobile device based on user authentication information. The mobile vault server includes a mobile device handler that communicates with the mobile device. A synchronization utility determines whether the at least one data entry on the secure vault is transferable to or storable on the mobile vault based on at least one of the size or the type of the at least one data entry and transfers the at least one data entry from the secure vault to a corresponding data entry on the mobile vault if the at least one data entry on the secure vault is determined to be transferable to or storable on the mobile vault.
Abstract:
In accordance with the invention, there are electron beam inspection systems, electron beam testable semiconductor test structures, and methods for detecting systematic defects, such as, for example contact-to-gate shorts, worm hole leakage paths, holes printing issues, and anomalies in sparse holes and random defects, such as, current leakage paths due to dislocations and pipes during semiconductor processing.
Abstract:
The present invention provides a gate dielectric having a flat nitrogen profile, a method of manufacture therefor, and a method of manufacturing an integrated circuit including the flat nitrogen profile. In one embodiment, the method of manufacturing the gate dielectric includes forming a gate dielectric layer (410) on a substrate (310), and subjecting the gate dielectric layer (410) to a nitrogen containing plasma process (510), wherein the nitrogen containing plasma process (510) has a ratio of helium to nitrogen of 3:1 or greater.
Abstract:
The present invention provides a gate dielectric having a flat nitrogen profile, a method of manufacture therefor, and a method of manufacturing an integrated circuit including the flat nitrogen profile. In one embodiment, the method of manufacturing the gate dielectric includes forming a gate dielectric layer (410) on a substrate (310), and subjecting the gate dielectric layer (410) to a nitrogen containing plasma process (510), wherein the nitrogen containing plasma process (510) has a ratio of helium to nitrogen of 3:1 or greater.