Abstract:
Semiconductor devices and fabrication methods are provided, in which metal transistor gates are provided for MOS transistors. Metal nitride is formed above a gate dielectric. A lanthaide series metal is implanted into the metal screen layer above the gate dielectric. The lanthaide metal is contained in the screen layer or at the interface between the screen metal layer and the gate dielectric. This process provides adjustment of the gate electrode work function, thereby tuning the threshold voltage of the resulting PMOS or NMOS transistors.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
Methods for fabricating two metal gate stacks with varying work functions for complementary metal oxide semiconductor (CMOS) devices are provided A first metal layer may be deposited onto a gate dielectric, followed by the deposition of a second metal layer, where the second metal layer modulated the work function of the first metal layer. The second metal layer and subsequently etch, exposing a portion of the first metal layer. A third metal layer may be deposited on the etched second metal layer and the exposed first metal layer, where the third metal layer may modulate the work function of the exposed first metal layer. Subsequent fabrication techniques may be used to define the gate stack.
Abstract:
The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a first transistor (120) located over a semiconductor substrate (110), wherein the first transistor (120) has a metal gate electrode (135) having a work function, and a second transistor (160) located over the semiconductor substrate (110) and proximate the first transistor (120), wherein the second transistor (160) has a plasma altered metal gate electrode (175) having a different work function.
Abstract:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer. The method further includes subjecting the exposed nitridated, high voltage dielectric to a plasma to remove the accelerant residue.
Abstract:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region, wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer, and subjecting the exposed nitridated, high voltage dielectric to a high vacuum to remove the accelerant residue.
Abstract:
A method for manufacturing a semiconductor device includes forming a gate electrode over a gate dielectric. The gate dielectric is formed by forming a lanthanide metal layer over a nitrided silicon oxide layer, and then performing an anneal to inter-diffuse atoms to form a lanthanide silicon oxynitride layer. A gate electrode layer may be deposited before or after the anneal. In an embodiment, the gate electrode layer includes a non-lanthanide metal layer, a barrier layer formed over the non-lanthanide metal layer, and a polysilicon layer formed over the barrier layer. Hafnium atoms may optionally be implanted into the nitrided silicon oxide layer.
Abstract:
Metal Oxide Semiconductor (MOS) transistors fabricated using current art may utilize a nitridation process on the gate dielectric to improve transistor reliability. Nitridation by the current art, which involves exposing the gate dielectric to a nitridation source, produces a significant concentration of nitrogen at the interface of the gate dielectric and the transistor substrate, which adversely affects transistor performance. This invention comprises the process of depositing a sacrificial layer on the gate dielectric prior to nitridation, exposing the sacrificial layer to a nitridation source, during which time nitrogen atoms diffuse through the sacrificial layer into the gate dielectric, then removing the sacrificial layer without degrading the gate dielectric. Work associated with this invention on high-k gate dielectrics has demonstrated a 20 percent reduction in nitrogen concentration at the gate dielectric-transistor substrate interface.
Abstract:
Methods for fabricating two metal gate stacks for complementary metal oxide semiconductor (CMOS) devices are provided. A common layer, such as a metal layer, a metal alloy layer, or a metal nitride layer may be deposited on to a gate dielectric. A first mask layer may be deposited and patterned over an active region, exposing a portion of the common layer. A first ion may be deposited in the common layer forming a first mask layer. Similarly, a second mask layer may be deposited and patterned over the other active region and the first metal layer, and another portion of the common layer is exposed. A second ion may be deposited in the common layer, forming a second mask layer.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.