Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region, wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer, and subjecting the exposed nitridated, high voltage dielectric to a high vacuum to remove the accelerant residue.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
The present invention is generally directed towards a method for removing hydrocarbon contamination from a substrate prior to a nitridation step, therein providing for a generally uniform nitridation of the substrate. The method comprises placing the substrate in a process chamber and flowing an oxygen-source gas into the process chamber. A first plasma is formed in the process chamber for a first predetermined amount of time, wherein the hydrocarbons combine with one or more species of the oxygen-source gas in radical form to form product gases. The gases are removed from the process chamber and a nitrogen-source gas is flowed into the process chamber. A second plasma is then formed in the process chamber for a second predetermined amount of time, therein nitriding the substrate in a significantly uniform manner.
Abstract:
A method is provided for non-thermally nitrided gate formation of high voltage transistor devices. The non-thermally nitrided gate formation is useful in the formation of dual thickness gate dielectric structures. The non-thermally nitrided gate formation comprises nitridation to introduce nitrogen atoms into the gate dielectric layer of the high voltage transistor devices to mitigate leakage associated with the high voltage transistor devices. The nitridation of the gate dielectric layer damages the surface of the gate dielectric layer. The damaged surface of the gate dielectric layer is removed by a relatively low temperature re-oxidation process. The low temperature re-oxidation process minimizes nitrogen loss during a subsequent photoresist stripping process and mitigates film densification, such that the structure can be readily etched by standard etching chemicals in subsequent processing.
Abstract:
The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a first transistor (120) located over a semiconductor substrate (110), wherein the first transistor (120) has a metal gate electrode (135) having a work function, and a second transistor (160) located over the semiconductor substrate (110) and proximate the first transistor (120), wherein the second transistor (160) has a plasma altered metal gate electrode (175) having a different work function.
Abstract:
The present invention provides a method for fabricating a dual gate semiconductor device. In one aspect, the method comprises forming a nitridated, high voltage gate dielectric layer over a semiconductor substrate, patterning a photoresist over the nitridated, high voltage gate dielectric layer to expose the nitridated, high voltage dielectric within a low voltage region, wherein the patterning leaves an accelerant residue on the exposed nitridated, high voltage gate dielectric layer, and subjecting the exposed nitridated, high voltage dielectric to a high vacuum to remove the accelerant residue.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
The present invention provides a gate dielectric having a flat nitrogen profile, a method of manufacture therefor, and a method of manufacturing an integrated circuit including the flat nitrogen profile. In one embodiment, the method of manufacturing the gate dielectric includes forming a gate dielectric layer (410) on a substrate (310), and subjecting the gate dielectric layer (410) to a nitrogen containing plasma process (510), wherein the nitrogen containing plasma process (510) has a ratio of helium to nitrogen of 3:1 or greater.
Abstract:
Ferroelectric components, such as the ferroelectric field effect transistors (FeFETs), ferroelectric capacitors and ferroelectric diodes described above may be operated as multi-level memory cells as described by the present invention. Storing multiple bits of information in each multi-level memory cell may be performed by a controller coupled to an array of the ferroelectric components configured as ferroelectric memory cells. The controller may execute the steps of receiving a bit pattern for writing to a multi-level memory cell comprising a ferroelectric layer; selecting a pulse duration for applying a write pulse to the memory cell based, at least in part, on the received bit pattern; and applying at least one write pulse to the memory cell having the selected pulse duration, in which the at least one write pulse creates a remnant polarization within the ferroelectric layer that is representative of the received bit pattern.