摘要:
In a DRAM adopting a self-aligned contact structure, an opening portion of predetermined size is formed in advance in an insulation film which surrounds an on-field gate electrode formed on an element isolating insulation film. The on-field gate electrode contacts a gate contact through the opening portion. A contact hole for the gate contact can thus be formed in self-alignment as can be the contact holes for a bit-line contact and an active contact. Consequently, the contact hole for the gate contact reaching the on-field gate can be formed simultaneously with the contact holes for the bit-line contact and active contact, thereby greatly reducing the number of manufacturing steps.
摘要:
In a method of fabricating a COB DRAM cell, a polysilicon plug is formed on the source and drain in self-alignment with the gate electrode. A bit line contact and a storage electrode contact are formed on the polysilicon plug thereby to reduce the aspect ratio of both the bit line contact and the storage electrode contact. With the polysilicon plug formed in self-alignment with the gate electrode, short-circuiting of contacts of adjacent element regions and short-circuiting of the plugs of the source and drain will not occur, leading to high protection against misregistration. Moreover, an independent lithography process is not required for forming the polysilicon plug, and, therefore, the number of fabrication steps is reduced.
摘要:
In the SOI region of a semiconductor substrate, a BOX layer is formed underneath with backgate electrodes to control the threshold voltages of MOS transistors formed in the SOI region.
摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
A semiconductor memory device has a semiconductor substrate, a first semiconductor region of a first conduction type formed on the semiconductor substrate, a second semiconductor region of a second conduction type opposite to the first conduction type, formed on the first semiconductor region. A trench capacitors having a trench extends through the first semiconductor region and the second semiconductor region, and is formed such that its top does not reach a top surface of the second semiconductor region, and the trench is formed therein with a conductive trench fill. A pair of gate electrodes is formed on the second semiconductor region, overlying the trench capacitor. A pair of insulating layers is formed to cover each of the pair of gate electrodes. A conductive layer is formed between the pair of insulating layers to self-align to each of the pair of insulating layers. The conductive layer has a leading end insulated from the second semiconductor region and reaching the interior of the second semiconductor region, and electrically connected to the conductive trench fill of the trench capacitor. A pair of third semiconductor regions of the first conduction type are formed in the second semiconductor region, and positioned opposite to each other with respect to the conductive layer. Each of the third semiconductor regions is directly in contact with the conductive layer, and constitutes either a source or a drain of transistors having one of the pair of gate electrodes, respectively. The pair of third semiconductor regions is formed substantially to a uniform depth.
摘要:
Capacitors are formed in the trenches made in an interlayer insulator made of silicon oxide. An insulating film (e.g., a silicon nitride film) is provided on the sides of each trench of the interlayer insulator. A storage electrode made of ruthenium or the like is provided in each trench of the interlayer insulator. A capacitor insulating film made of BSTO or the like is formed on the storage electrode. A plate electrode made of ruthenium or the like is formed on the capacitor insulating film. The plate electrode is common to all capacitors provided. Any two adjacent capacitors are electrically isolated by the interlayer insulator and the insulating film provided on the sides of the trenches of the interlayer insulator.
摘要:
A semiconductor memory device comprises: a memory cell array including memory cells arranged in the form of a matrix; a redundant cell array including redundant cells arranged for relieving a defective memory cell of the memory cell array; a defective address memory circuit including first and second memory circuits using different programming methods for storing an address of the defective memory cell of the memory cell array; and a substitution control circuit for controlling the substitution of one of the redundant cells of the redundant cell array for the defective memory cell of the memory cell array on the basis of memory data of the defective address memory circuit. Thus, it is possible to provide a semiconductor memory device capable of reducing the area occupied by a defective address memory circuit and surely carrying out defect relief, and a method for producing the same.
摘要:
Provided is a semiconductor device and a method of manufacturing the semiconductor device having a stacked type capacitor excellent in storage capacity, breakdown voltage and reliability. A storage node electrode (Ru) of the stacked-type capacitor is formed on a contact hole of the underlying insulating film by the steps of forming the side wall of the contact hole diagonally at a taper angle within the range of 90 to 110°, forming a storage node electrode on the inner wall surface of the contact hole, filling SOG in the contact hole, etching off the Ru film on the insulating film using SOG as a mask, and etching off the Ru film formed on the upper peripheral region of the inner wall in the depth direction of the contact hole. Thereafter, the dielectric film of the stacked-type capacitor formed of a (Ba, Sr) TiO3 thin film is formed on the Ru storage node electrode. In this manner, it is possible to obtain a stack-type capacitor having a drastically-improved step coverage and a high breakdown voltage. In addition, it is easy to reduce the distance between adjacent Ru storage node electrodes within a resolution limit of lithography, compared to the conventional method.
摘要:
In a method of fabricating a COB DRAM cell, a polysilicon plug is formed on the source and drain in self-alignment with the gate electrode. A bit line contact and a storage electrode contact are formed on the polysilicon plug thereby to reduce the aspect ratio of both the bit line contact and the storage electrode contact. With the polysilicon plug formed in self-alignment with the gate electrode, short-circuiting of contacts of adjacent element regions and short-circuiting of the plugs of the source and drain will not occur, leading to high protection against misregistration. Moreover, an independent lithography process is not required for forming the polysilicon plug, and, therefore, the number of fabrication steps is reduced.
摘要:
A first contact hole for a bit line is formed in an interlayer insulating film, and a polysilicon film is formed on the inner surface of the contact hole and on the interlayer insulating film. Subsequently, the polysiliccon film is subjected to isotropic dry etching using a resist as a mask, and the interlayer insulating film is subjected to RIE etching, thereby forming a second contact hole in the interlayer insulating film in a peripheral circuit region. Then, a laminated film is formed on the inner surface of the second contact hole and on the polysilicon film, and the second contact hole is filled with a filling member. The laminated film and the polysilicon film are patterned, thereby forming a bit line in a memory cell region.