Abstract:
The core concept of this ADC is the high-speed fully-differential comparators which are clocked at 2.64 GHz and used in a 60 GHz transceiver. The comparator consists of a pre-amplifier stage, a capture stage, a regeneration cell and an output latch. The pre-amplifier stage is not clocked; therefore, the pre-amplifier stage does not suffer initialization and transient behavior effects when the clock signal switches state. The transient response of being enabled and disabled is eliminated. Instead, a capture stage transfers the contents of the pre-amplifier stage into a memory regeneration stage. The capture stage is clocked by pulses that are timed to minimize the clock kick-back generated by the memory regeneration stage. The clock kick-back is reduced even when many comparators are coupled to the PGA. The comparators, instead of having extra dummy fingers, are also aligned right next to each other to minimize the mismatching layout effect.
Abstract:
An analog-to-digital converter comprises a first set of comparators configured for generating a coarse digital measurement of an analog input signal, and a second set of comparators for performing a fine digital measurement of the analog input signal. The second set comprises a plurality of dynamic comparators, wherein each dynamic comparator is configurable for being activated by a clock signal. An activation circuit processes the coarse measurement and an input clock signal for generating a set of activation signals, which activate a subset of the dynamic comparators to generate the fine digital measurement.
Abstract:
A method of communicating over a wideband communication channel divided into a plurality of sub-channels comprises dividing a single serial message intended for one of the plurality of communication devices into a plurality of parallel messages, encoding each of the plurality of parallel messages onto at least some of the plurality of sub-channels, and transmitting the encoded plurality of parallel messages to the communication device over the wideband communication channel.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a first amplifier coupled to a first and a second node; a differential capacitive load coupled to the first and the second node, the differential capacitive load coupled between drains of transistors in a cross coupled transistor circuit; a current mirror coupled to a source of each transistor; and a capacitor coupled between the sources of the transistors. A plurality of amplifiers can be coupled to the differential capacitive load, wherein each amplifier comprises a clock-less pre-amplifier of a comparator. The amplifiers may be abutted to one another such that an active transistor of a first differential stage in a first amplifier behaves as a dummy transistor for an adjacent differential stage in a second amplifier.
Abstract:
This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
Abstract:
A portable unit with an endfire antenna and operating at 60 GHz makes an optimum communication channel with an endfire antenna in an array of antennas distributed over the area of a ceiling. The portable unit is pointed towards the ceiling and the system controlling the ceiling units selects and adjusts the positioning of an endfire antenna mounted on a 3-D adjustable rotatable unit. Several transceivers can be mounted together, offset from one another, to provide a wide coverage in both azimuth direction and elevation direction. These units can be rigidly mounted as an array in a ceiling, apparatus. The system controlling the ceiling array selects one of the transceivers in one of the units to make the optimum communication channel to the portable unit. The system includes the integration of power management features by switching between Wi-Fi in favor of the 60 GHz channel.
Abstract:
Processors are arranged in a pipeline structure to operate on multiple layers of data, each layer comprising multiple groups of data. An input to a memory is coupled to an output of the last processor in the pipeline, and the memory's output is coupled to an input of the first processor in the pipeline. Multiplexing and de-multiplexing operations are performed in the pipeline. For each group in each layer, a stored result read from the memory is applied to the first processor in the pipeline structure. A calculated result of the stored result is output at the last processor and stored in the memory. Once processing for the last group of data in a first layer is completed, the corresponding processor is configured to process data in a next layer before the pipeline finishes processing the first layer. The stored result obtained from the next layer comprises a calculated result produced from a layer previous to the first layer.
Abstract:
This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.