Abstract:
The invention relates to a method to start up a Fischer-Tropsch process. A catalyst with a latent activity is used. The catalyst comprises titania, cobalt, promoter, and chlorine. The catalyst comprises more than 0.7 and less than 4 weight percent of the element chlorine, calculated on the total weight of the catalyst.
Abstract:
Regenerable aromatization catalysts having high surface area and pore volume, as well as methods for producing these catalysts, are disclosed.
Abstract:
A method of preparing a catalyst comprising selecting a zeolite having a mean particle size of equal to or less than about 6 microns, blending the zeolite with a binder and water to form a paste, shaping the paste into a bound zeolite support, adding a metal to the bound zeolite support to form a metalized catalyst support, and adding at least one halide to the metalized catalyst support to form the catalyst. A catalytic reforming process for converting hydrocarbons to aromatics comprising: contacting a catalyst comprising a silica bound zeolite, a Group VIII metal supported thereby, and at least one halide with a hydrocarbon feed in a reaction zone under reforming conditions and recovering aromatics from the reaction zone, wherein the silica bound zeolite comprises a zeolite having a mean particle size of equal to or less than about 6 microns and a median particle size of equal to or less than about 5 microns.
Abstract:
In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
Abstract:
A method of preparing a fresh catalyst comprises impregnating a metal to a catalyst support to produce an impregnated catalyst, dispersing the metal in the impregnated catalyst to produce an impregnated, dispersed catalyst, contacting the impregnated, dispersed catalyst with an activating composition to produce an impregnated, dispersed, activated catalyst, and thermally treating the impregnated, dispersed, activated catalyst to produce the fresh catalyst wherein the activating composition is in the gas phase.
Abstract:
A process for the hydrodechlorination of carbon tetrachloride to produce chloroform utilizes a supported catalyst having a bimetallic components of platinum and iridium. The bimetallic catalyst may be promoted with small amounts of a third metal, such as tin, titanium, germanium, rhenium, silicon, lead, phosphorus, arsenic, antimony, bismuth or mixtures thereof. By-product production is decreased and duration of catalyst activity is improved by the use of the catalyst of this invention.
Abstract:
A catalyst and a process for using the catalyst are disclosed generally for the conversion of hydrocarbons. The catalyst has an increased average bulk density and a decreased mass ratio of platinum-group metal. The process using the catalyst obtains unexpected high activity and stability for the reforming of naphtha range hydrocarbons. Mössbauer spectroscopy is used to characterize the extent of tin association with platinum and determine an effective molar tin ratio appropriate for alumina supports with densities above 0.6 g/cc.
Abstract:
A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
Abstract:
A catalyst composition comprising an alumina carrier, a Group VIII noble metal, and a halogen compound wherein the catalyst composition has total pore volume of more than 0.48 ml/g and wherein at least 50% of this total pore volume resides in pores with a diameter smaller than 12 nm. This catalyst composition has a higher activity in isomerization reactions, per gram of catalyst and per gram of Group VIII noble metal, than prior art catalyst compositions.
Abstract:
A catalyst composition comprising an alumina carrier, a Group VIII noble metal, and a halogen compound wherein the catalyst composition has total pore volume of more than 0.48 ml/g and wherein at least 50% of this total pore volume resides in pores with a diameter smaller than 12 nm. This catalyst composition has a higher activity in isomerization reactions, per gram of catalyst and per gram of Group VIII noble metal, than prior art catalyst compositions.