Tunable system and method for stress resolution in additive manufacturing

    公开(公告)号:US11772330B2

    公开(公告)日:2023-10-03

    申请号:US16872618

    申请日:2020-05-12

    摘要: Prior to manufacturing a product by additive manufacturing, a stress relief profile including frequency and amplitude parameters of an ultrasonic input is determined based on physical properties of the product, including resonant frequencies of the product and a material from which the product is manufactured. Successive layers of a material are added and energy is applied to incorporate the material of each layer into the product. A processor accesses stress relief profile parameters for each layer, determines whether a layer requires stress relief and determines a frequency and a power level for the stress relief at the layer. An ultrasonic input is applied with the determined parameters to relieve stress as the product is built up.

    ADDITIVE MANUFACTURING METHOD AND DEVICE
    14.
    发明公开

    公开(公告)号:US20230211548A1

    公开(公告)日:2023-07-06

    申请号:US18011300

    申请日:2021-06-28

    摘要: The invention relates to an additive manufacturing method in which a component (10, 42, 43, 44, 45) is produced in layers using an energy beam (8, 41, 58) which solidifies a starting material (4) and is irradiated by energy beam irradiating means (9, 22, 31, 38, 39, 55, 59, 61) while the starting material (4) is held by a base surface (3, 15, 30, 36, 52) arranged on a base element (2, 16, 29, 35, 51). While the starting material (4) is being irradiated with the energy beam (8, 41, 58), the base element (2, 16, 29, 35, 51) is moved by a rotational component which has a base element rotational axis, wherein the starting material (4) is held on the base surface (3, 15, 30, 36, 52) by a centrifugal acceleration generated by the rotational component. The invention is characterized in that a rotational movement is produced for at least some of the energy beam irradiating means (9, 22, 31, 38, 39, 55, 59, 61). Analogously, at least one energy beam rotational axis (46) is proposed for rotating at least some of the energy beam irradiating means (9, 22, 31, 38, 39, 55, 59, 61) in an additive manufacturing device in which the starting material (4) is held on a base surface (3, 15, 30, 36, 52) by a centrifugal acceleration.