Abstract:
A tire for a vehicle wheel includes at least one metallic reinforcing cord comprising a single strand of elementary filaments preformed by sinusoidal waving and wound together. The number of filaments is greater than or equal to 3 and less than or equal to 8. A diameter of each filament is greater than or equal to 0.12 mm and less than or equal to 0.35 mm. A linear density of the at least one reinforcing cord is greater than or equal to 0.18 g/m and less than or equal to 4.0 g/m. A value of a breaking-stress integral of the at least one reinforcing cord is greater than or equal to 5,000 J/m3. In a two-wheeled vehicle, the at least one reinforcing cord in a tire for front-mounting may be distributed with a variable density while, in a tire for rear-mounting, the density may be constant.
Abstract translation:用于车轮的轮胎包括至少一个金属加强帘线,其包括通过正弦挥动预先形成并缠绕在一起的单股基本丝。 长丝的数量大于或等于3并且小于或等于8.每根细丝的直径大于或等于0.12mm且小于或等于0.35mm。 至少一个增强帘线的线密度大于或等于0.18g / m且小于或等于4.0g / m 2。 所述至少一个加强帘线的断裂应力积分的值大于或等于5,000J / m 3。 在两轮车辆中,用于前部安装的轮胎中的至少一个加强帘线可以以可变密度分布,而在用于后部安装的轮胎中,密度可以是恒定的。
Abstract:
A synthetic rope for an elevator having improved resistance to compression and abrasion is provided and comprises a plurality of strands forming layers of the rope, each strand formed from a plurality of pre-twisted strands made from high modulus synthetic filaments. One or more of the strands or layers of strands may be impregnated with a lubricant, such as polytetrafluoroethylene, to reduce the abrasion among the strands and substrands, and increase the service life of the rope. The exterior of the rope may be covered by a jacket that provides for traction with the drive sheave. An elevator system comprising the claimed rope is also provided.
Abstract:
A composite cord used in the reinforcement of pneumatic tires is composed of a plurality of twisted steel strands cabled around a multifilament core.
Abstract:
A locking cable which is constructed of a plurality of separate strands with each strand containing a plurality of separate wires, each wire being between 0.005 and 0.012 of an inch in diameter. One side of the cable along its entire longitudinal length is stretched so that the material along that side is caused to exceed its yield point and be permanently deformed. As a result, the cable assumes a natural helical coiled configuration. A plastic cover may be applied to the cable in a close fitting relationship to help prevent the cable from becoming untwisted. The method of making the helical coiled cable comprises preforming and twisting of a plurality of separate wires together in a clockwise direction to form a strand, preforming and twisting a plurality of separate strands together in a counterclockwise direction to form the cable, and stretching one side of the cable along its entire length. An apparatus to perform the method of this invention comprises a pair of roller assemblies through which the cable is conducted with the cable being passed about a pin with an angular displacement exceeding 190*. The cable is passed through the apparatus in an extremely taut manner which causes one side of the cable to be permanently deformed.
Abstract:
An embodiment of a wellbore cable comprises a cable core, at least a first armor wire layer comprising a plurality of strength members and surrounding the cable core, and at least a second armor wire layer comprising a plurality of strength members surrounding the first armor wire layer, the second armor wire layer covering a predetermined percentage of the circumference of the first armor wire layer to prevent torque imbalance in the cable.
Abstract:
A hybrid rope constructed of a plurality of strands, wherein each strand is constructed of a fiber center, a jacket surrounding the fiber center, and a plurality of wires surrounding the jacket. The fiber center can be constructed of one or more high-strength synthetic fibers or yarns. The jacket can be constructed of polypropylene, thermoplastic polyurethane, high-density polyethylene, linear low-density polyethylene, nylon or other similar materials. The jacket can have a braided or woven design and adds a protective layer between the fiber center and the wires. The wires can be constructed of high-strength steel wires, galvanized steel or stainless steel. The fibers or yarns that make of the fiber center are twisted to lay right and then covered with the jacket. The wires then surround the jacket and are twisted to lay to the left. This creates a torque-balanced condition of the hybrid rope.
Abstract:
Cable structures of security systems may include multiple subassemblies having different cut-resistant characteristics. One system includes, inter alia, a portable article, a support, and a length of a cable assembly extending between a first cable end coupled to the portable article and a second cable end coupled to the support, where the cable assembly includes a first cable subassembly extending along at least a portion of the length of the cable assembly, and a second cable subassembly extending along at least the portion of the length of the cable assembly and adjacent to the first cable subassembly, and where the first cable subassembly includes a first cut resistant characteristic and the second cable subassembly includes a second cut resistant characteristic that is different than the first cut resistant characteristic.
Abstract:
A wire cable and a device and method for producing the wire cable, wherein a core strand is compacted and then braid strands are stranded on the core strand. The core strand is hammered before stranding of the braid strands in order to smooth the surface thereof. A plastic layer is applied to the core strand before stranding of the braid strands. The braid strands are pressed into the plastic layer while the plastic layer is heated. The core strand is a core cable and the braid strands are strands of the wire cable or the core strand is a heart strand and the braid strands are outer core strands of a core cable of the wire cable. A greater breaking strength of the wire cable is obtained by hammering the core strand in order to smooth it than by compacting a core strand with a roller compressor.